Characterization of Glass Forming Alloy Fe43.2Co28.8B19.2Si4.8Nb4 Processed by Spray Forming and Wedge Mold Casting Techniques

2011 ◽  
Vol 691 ◽  
pp. 23-26 ◽  
Author(s):  
C. Triveño Rios ◽  
Conrado R. M. Afonso ◽  
Claudemiro Bolfarini ◽  
Walter José Botta Filho ◽  
Claudio Shyinti Kiminami

Bulk glassy alloys based on the Fe-Co-B-Si-Nb system have already achieved high levels of mechanical strength. The present work investigated the microstructural evolution of Fe43.2Co28.8B19.2Si4.8Nb4 alloy during the spray forming and wedge mold casting processes, with emphasis on the formation of amorphous phase. The microstructure was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The region outer the spray deposit showed the formation of an amorphous structure with a thickness of ~2.5 mm, while that of the wedge-shaped sample exhibited a thickness of up to ~1.5 mm, suggesting that both processes show a promising potential for the production of bulk glass alloys.

2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5552
Author(s):  
Ryota Kudo ◽  
Masahiro Sonobe ◽  
Yoshiaki Chino ◽  
Yu Kitazawa ◽  
Mutsumi Kimura

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


2014 ◽  
Vol 670-671 ◽  
pp. 26-29
Author(s):  
Zhi Long Pan ◽  
Shi Liang Ao ◽  
Jian Ping Jia

Oxide free Tin nanoparticles were synthesized from a chemical reduction method. Their morphological and thermal characterizations were studied in this paper. The X-ray diffraction (XRD) study showed that no oxides of Tin nanoparticles were formed. The thermal characterization by differential scanning calorimetry (DSC) exhibited the size dependency of the melting points. The melting point was as low as 202.16°C.


2012 ◽  
Vol 490-495 ◽  
pp. 3868-3873 ◽  
Author(s):  
Xiao Hong Yang ◽  
Xi Peng Nie ◽  
Jian Zhong Jiang

Bulk metallic glasses (BMGs) of Cu45Zr48-xAl7Tix with x= 0, 1.5, and 3 at.% were prepared by copper mould casting. The corrosion resistance of the BMGs with different Ti contents was examined by potentiodynamic polarization tests and weight loss measurements in 1 N NaOH, 1 N H2SO4, 1 N H2SO4 + 0.01 N NaCl and 0.5 N NaCl solutions, respectively. The newly-developed BMGs’ corrosion resistance in Cl-- or both H+ and Cl--ions containing solutions can be greatly enhanced. The influence of Ti addition on glass forming ability (GFA) and thermal stability was investigated by x-ray diffraction and differential scanning calorimetry in detail. The alloy containing 1.5 at.% Ti exhibits the largest GFA, the critical size comes up to 10 mm in diameter.


2011 ◽  
Vol 311-313 ◽  
pp. 1638-1641
Author(s):  
Jun Hua Wang ◽  
Xiang Biao Cheng ◽  
Gang Huang ◽  
Feng Chun Dong ◽  
Yong Tang Jia

PCL/PVP blend membrane was prepared by casting solution method. Scanning electron microscopy (SEM), diffraction scanning calorimetry (DSC), and X-ray diffraction (XRD) techniques were employed to characterize membrane structure and morphology. Moreover, the hydrophilicity, mechanical property and biodegradability of membranes were investigated. Due to introducing PVP, the crystallinity and mechanical property of PCL altered to some extent. The hydrophilicity of the blend membrane improved remarkably with increasing PVP content, which was expressed by the contact angle declining and the rate of water absorption increasing. Lipase accelerated the degradation rate of PCL/PVP membrane.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jianjun Chen ◽  
Yueyue Jia ◽  
Zhiye Zhang ◽  
Xinlong Wang ◽  
Lin Yang

We investigated the changes in the conformation and crystalline structure of polypropylene (PP) using a combination of Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) based on PP/chlorinated PP (CPP)/polyaniline (PANI) composites. The DSC heating thermograms and WAXD patterns of the PP/CPP/PANI composites showed that theβ-crystal was affected greatly by the CPP content. Characterization of the specific regularity in the infrared band variation showed that the conformational orders of the helical sequences in PP exhibited major changes that depended on the CPP content. Initially, the intensity ratio ofA840/A810increased with the CPP concentration and reached its maximum level when the CPP content was <13.22% before decreasing as the CPP content increased further. The effect of increased temperature on the conformation of PP was studied by in situ FTIR. Initially, the intensity ratio ofA999/A973decreased slowly with increasing the temperature up to 105°C before decreasing sharply with further increases in temperature and then decreasing slowly again when the temperature was higher than 128°C.


2012 ◽  
Vol 479-481 ◽  
pp. 1786-1789 ◽  
Author(s):  
Tie Jun Chen

Multi-component Hf45.6Cu27.8Ni9.3Ti5Al12.4bulk metallic glasses (BMGs) were prepared successfully by casted into the water-cooled Cu mold. Characterization of the casted Hf45.6Cu27.8Ni9.3Ti5Al12.4rods was carried out by X-ray diffraction. The thermal stability and crystallization kinetics were followed by differential scanning calorimetry. The results show that the alloy Hf45.6Cu27.8Ni9.3Ti5Al12.4had a critical cylindrical rod diameter for glass formation, Dc, of 7 mm and the largest cross-sectional diameter (about 12.4mm) can be obtained in the ideal condition. The critical cooling rate for glass formation is 6.48K/s. The Hf45.6Cu27.8Ni9.3Ti5Al12.4BMG has larger glass forming ability and higher thermal stability.


1999 ◽  
Vol 14 (4) ◽  
pp. 1570-1575 ◽  
Author(s):  
G. Ennas ◽  
G. Marongiu ◽  
A. Musinu ◽  
A. Falqui ◽  
P. Ballirano ◽  
...  

Homogeneous maghemite (γ–Fe2O3) nanoparticles with an average crystal size around 5 nm were synthesized by successive hydrolysis, oxidation, and dehydration of tetrapyridino-ferrous chloride. Morphological, thermal, and structural properties were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) techniques. Rietveld refinement indicated a cubic cell. The superstructure reflections, related to the ordering of cation lattice vacancies, were not detected in the diffraction pattern. Kinetics of the solid-state phase transition of nanocrystalline maghemite to hematite (α–Fe2O3), investigated by energy dispersive x-ray diffraction (EDXRD), indicates that direct transformation from nanocrystalline maghemite to microcrystalline hematite takes place during isothermal treatment at 385 °C. This temperature is lower than that observed both for microcrystalline maghemite and for nanocrystalline maghemite supported on silica.


Sign in / Sign up

Export Citation Format

Share Document