Research on the Pulse Width Modulated Pneumatic Servo Systems with Long Transmission Lines

2011 ◽  
Vol 697-698 ◽  
pp. 537-540
Author(s):  
P. Zheng ◽  
Shan Jiang ◽  
J. Liu ◽  
J. Guo ◽  
W.H. Feng

This paper presents a nonlinear model of the pulse width modulated(PWM) pneumatic servo systems with long transmission lines which has a huge potential to be used in the automatic production lines and other industrial applications, for the advantages of low cost and clean. An averaging approach is adopted to describe the equivalent continuous-time dynamics of a PWM controlled nonlinear system. With this model, the simulation is taken with a fuzzy logic controller. The simulation results indicate that the PWM pneumatic servo system with long lines have good performance both in the position control and tracking ability.

Author(s):  
Behzad Parsi ◽  
Lihong Zhang

Based on the International Electrotechnical Commission standards, the electronic devices in the industrial class (e.g., integrated circuits or batteries) can only operate at the ambient temperature between -40°C and 85°C. For the human-involved regions in Alaska, Northern Canada, and Antarctica, extreme cold condition as low as -55°C might affect sensing electronic devices utilized in the scientific or industrial applications. In this paper, we propose a design and optimization methodology for the self-heating portable enclosures, which can warm up the inner space from -55°C for encasing the low-cost industrial-class electronic devices instead of expensive military-class ones to work reliably within their allowed operating temperature limit. Among the other options, ceramic thermal resistors are selected as the heating elements inside the enclosure. The placement of the thermal resistors is studied with the aid of thermal modelling for the single heating device by using the curve fitting technique to achieve uniform temperature distribution within the enclosure. To maintain the inner temperature above -40°C but with the least power consumption from the thermal resistors, we have developed a control system based on the fuzzy logic controller. For validation, we have utilized COMSOL Multiphysics software and then one prototyped enclosure along with the fuzzy control system. Our experimental measurement exhibits its efficacy compared to the other design options.


2005 ◽  
Vol 128 (3) ◽  
pp. 663-669 ◽  
Author(s):  
Xiangrong Shen ◽  
Jianlong Zhang ◽  
Eric J. Barth ◽  
Michael Goldfarb

This paper presents a control methodology that enables nonlinear model-based control of pulse width modulated (PWM) pneumatic servo actuators. An averaging approach is developed to describe the equivalent continuous-time dynamics of a PWM controlled nonlinear system, which renders the system, originally discontinuous and possibly nonaffine in the input, into an equivalent system that is both continuous and affine in control input (i.e., transforms the system to nonlinear control canonical form). This approach is applied to a pneumatic actuator controlled by a pair of three-way solenoid actuated valves. The pneumatic actuation system is transformed into its averaged equivalent control canonical form, and a sliding mode controller is developed based on the resulting model. The controller is implemented on an experimental system, and the effectiveness of the proposed approach validated by experimental trajectory tracking.


1970 ◽  
Vol 5 (1.) ◽  
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Malek Alkayyali ◽  
Péter Tamás Szemes

This paper presents hybrid stepper motor (is a type of stepping motor) modelling and simulation which is widely used a kind of motor in industrial applications. In this study, the stepper motor was modelled using bond graph technique and simulation for desired position was executed on LabVIEWgraphical interface. Then, firstly a convenient PID controller was designed for position, speed and current and PID close loopresponse was obtained for position control. Then, PID parameters for each controller were arranged separately to obtain good response Secondly, Fuzzy Logic controller applied to the system and its response was obtained. Finally, both responses are compared. According to comparison, it was observed that Fuzzy Logic controller’s response is better than PID’s. (In this paper, all shown responses were observed for 120 degree desired position)


Author(s):  
Ganapathy Ram ◽  
Santha K R

Permanent magnet synchronous motors (PMSMs) are increasingly used in high performance variable speed drives of many industrial applications. PMSM has many features, like high efficiency, compactness, high torque to inertia ratio, rapid dynamic response, simple modeling and control, and maintenance free operation. Presence of position sensors presents several disadvantages, such as reduced reliability, susceptibility to noise, additional cost and weight and increased complexity of the drive system. For these reasons, the development of alternative indirect methods for speed and position control becomes an important research topic. Advantages of sensorless control are reduced hardware complexity, low cost, reduced size, cable elimination, increased noise immunity, increased reliability and decreased maintenance. The key problem in sensorless vector control of ac drives is the accurate dynamic estimation of the stator flux vector over a wide speed range using only terminal variables (currents and voltages). The difficulty comprises state estimation at very low speeds where the fundamental excitation is low and the observer performance tends to be poor. Moreover, the noises of system and measurements are considered other main problems. This paper presents a comprehensive study of the different sliding mode observer methods of speed and position estimations for sensorless control of PMSM drives.


Author(s):  
Behzad Parsi ◽  
Lihong Zhang

Based on the International Electrotechnical Commission (IEC) standards, the electronic devices in the industrial class (e.g., integrated circuits (ICs) or batteries) can only operate at the ambient temperature between -40°C and 85°C. For the human-involved regions in Alaska, Northern Canada, and Antarctica, extreme cold condition as low as -55°C might affect sensing electronic devices utilized in the scientific or industrial applications. In this paper, we propose a design and optimization methodology for the self-heating portable enclosures, which can warm up the inner space from -55°C for encasing the low-cost industrial-class electronic devices instead of expensive military-class ones to work reliably within their allowed operating temperature limit. By considering various factors (including hardness, thermal conductivity, cost, and lifetime), we determine to mainly use polycarbonate as the manufacturing material of the enclosure. Among the other options, ceramic thermal resistors are selected as the heating elements inside the enclosure. The placement of the thermal resistors is studied with the aid of thermal modelling for the single heating device by using the curve fitting technique to achieve uniform temperature distribution within the enclosure. To maintain the inner temperature above -40°C but with the least power consumption from the thermal resistors, we have developed a control system based on the fuzzy logic controller (FLC). For validation, we have first utilized COMSOL Multiphysics software and then prototyped one enclosure along with the control system. Our experimental measurement exhibits its efficacy compared to the other design options.


2020 ◽  
Vol 12 (8) ◽  
pp. 1102-1124
Author(s):  
M. Fayez ◽  
F. Bendary ◽  
M. El-Hadidy ◽  
M. Mandor

Turbine generator shaft torsional oscillations is an interdisciplinary power system dynamic problem as it involves mechanical and electrical engineering. Torsional oscillations occur in the mechanical for electrical reasons. Torsional oscillations cause fatigue life expenditure of the mechanical shaft system. There have been great motivations to mitigate the shaft torsional oscillations especially when unrestricted high speed reclosure (HSR) is utilized on the overhead transmission lines emanating from a generation station. Mitigation of torsional oscillation compromises between the use of HSR and preserving the mechanical integrity of the involved turbine generator set. Therefore, braking resistor (BR) controlled by fuzzy logic controller is presented in this paper as a low cost, reliable mean for torsional oscillations mitigation. BR was first utilized for the system transient stability enhancement. It serves as an extra load capable of dissipating extra generated power in case of system severe faults close to a generation station consequently prevents generator pole slipping conditions. IEEE 3 machine 9 bus system is adopted in this paper to test the effects of BR on shaft torsional oscillations mitigation in interconnected power system. Comparative simulation studies between the unsuccessful reclosure with and without fuzzy controlled BR prove the effectiveness of the scheme for mitigation of torsional oscillations significantly.


2018 ◽  
Vol 26 (9) ◽  
pp. 1-14
Author(s):  
Athraa Sabeeh Hasan

In industrial applications, requiring variable speed and load characteristics, the DC motor is the attractive piece of equipment; due to its ease of controllability. Pulse-width modulation (PWM) or duty-cycle variation methods are commonly used in speed control of DC motors. A simple, low cost, and efficient design for a control circuit uses the PWM to adjust the average voltage fed the DC motor is proposed in this paper. The objective of this paper is to illustrate how the DC motor's speed could be controlled using a 555 timer. This timer works like a changeable pulse width generator. The pulse width can be changed via relays to add or remove resistors in the timer circuit. Using relays enable the proposed circuit to drive higher-power motors. The designed circuit controls the speed of a Permanent Magnet PM DC motor by means of the parallel port of a PC; therefore, the user will be able to control the speed of the DC motor. C++ computer program is used to run the motor at four levels of speed. An interface circuit is used to connect the motor to the parallel port. PC based control software is chosen to get simplicity and ease of implementation.


1996 ◽  
Vol 24 (2) ◽  
pp. 93-100
Author(s):  
S. C. Fok ◽  
E. K. Ong

Pneumatic cylinder systems have the potential to provide fast and reliable motion characteristics with large power output to weight at low cost to benefit ratios. To properly utilize pneumatic cylinder systems in industrial applications (especially in control situations), mechanical engineers must appreciate and understand the dynamic characteristics of these devices. In this paper, the linearized continuous time dynamics of a pneumatic rodless cylinder system are examined. Two transfer functions, based upon the midstroke and off-centre operation conditions respectively, are presented.


Sign in / Sign up

Export Citation Format

Share Document