Microstructure and Texture Evolution of a Cold Rolled Ni-Cr-W Alloy after Annealing

2011 ◽  
Vol 702-703 ◽  
pp. 352-355
Author(s):  
Wei Wang ◽  
I. Drouelle ◽  
F. Brisset ◽  
M.H. Mathon ◽  
T. Auger ◽  
...  

A Ni-5.7%Cr-25.2%W (wt%) alloy was deformed by cold rolling in different reduction conditions (50%, 70%, and 90%) and then annealed under hydrogen atmosphere. Microstructure and texture evolutions were analyzed using Electron BackScattered Diffraction (EBSD). Orientation Distribution Functions (ODFs) and stored energy were calculated from neutron diffraction measurements. A strengthening of the α-fiber texture was observed after 90% cold rolling and a homogenous microstructure was obtained after annealing at 900°C.

2007 ◽  
Vol 546-549 ◽  
pp. 347-350 ◽  
Author(s):  
Li Li ◽  
Tie Tao Zhou ◽  
Huan Xi Li ◽  
Chang Qi Chen ◽  
Qiu Lin Wu ◽  
...  

Texture evolution in Mg-13wt%Li-X alloy cold-rolled from 1.35 mm to 0.34 mm thickness was investigated, by obtaining pole figures and orientation distribution functions (ODFs). Punching tests were conducted to reveal the effect of texture nature on formability. It was found that: (1) the textures of the as-received sheet are characterized by α fiber texture, a γ fiber texture and a cubic texture in both cold-rolled and annealed conditions; (2) with thickness reduction though rolling, the intensity of the γ fiber texture continuously increases and finally the γ fiber texture connects into {111} tube texture, the texture of <11 0> orientation flows towards {223}<11 0> along α fiber, the cubic texture of {001}<100> turns into {035}<100>, while some grains concentrate at {011}<41 1> orientation; (3) good punching behavior of the cold-rolled sheet corresponds to the appearance of a well-developed γ fiber texture.


2013 ◽  
Vol 203-204 ◽  
pp. 105-110 ◽  
Author(s):  
Agnieszka Kurc-Lisiecka ◽  
Wojciech Ozgowicz ◽  
Wiktoria Ratuszek ◽  
Joanna Kowalska

The textures of cold-rolled AISI 304 austenitic steel were the object of the investigations. The austenite steel was deformed by cold-rolling to 20, 40 and 70% reduction. A significant amount of martensite, formed due to the strain induced (γ®a’) transformation, was detected in the deformed structure by applying magnetic and X-ray diffraction methods. Texture analysis was performed on the basis of the orientation distribution functions (ODFs) calculated from the experimental pole figures. The texture measurements of both phases were conducted from the center layers of the cold-rolled strip. In the case of metastable austenite AISI 304 steel the texture development was very complex because three processes were proceded simultaneously during the cold-rolling, namely: plastic deformation of the austenitic g-phase, strain induced phase transformation γ®a’ and deformation of the formed a’-martensite. These processes resulted in the presence of two phases in the structure of the steel with a definite crystallographic relationship and orientation changes of both phases with increasing of the deformation. Thus, the resultant deformation texture of the investigated steels is described by the austenite and martensite texture components. The rolling texture of γ-phase describes mainly orientations from the fiber α =<110>║ND and the major components of the martensite deformation texture are orientations from the fibers α1=<110>║RD and γ ={111}║ND.


1971 ◽  
Vol 4 (4) ◽  
pp. 303-310 ◽  
Author(s):  
H. J. Bunge ◽  
J. Tobisch ◽  
W. Sonntag

Three-dimensional orientation distribution functions of the crystallites in copper sheets, cold rolled to different degrees of reduction, have been determined using neutron diffraction pole figures. The main features of the textures may be represented by the orientation `tube' already described in prior publications. Two ranges of rolling reduction can be distinguished, a lower one (30 to 50%) and a higher one (70 to 95%) the texture changes of which correspond to those calculated after the Taylor theory. In an intermediate range (50 to 70%) a different deformation mechanism occurs which leads to an intermediate (001) [110] texture component. It is supposed that anisotropic hardening may have occurred in this range.


2014 ◽  
Vol 789 ◽  
pp. 275-281
Author(s):  
Bo Cheng ◽  
Lei Guan ◽  
Da Bo Liu

Activation of different slip and twinning systems in cold-rolled Mg-3Al-1Zn at different thickness reductions was investigated by using orientation distribution function and electron backscattered diffraction techniques. The results show that the activation of slip coincides with the most compressive strain, resulting in little need for deformation twinning. The importance of prismatic slip was reinforced and <c+a> pyramidal slip was not a major deformation mechanism during cold rolling. The crystal texture in the cold rolled samples was weakened by twinning but strengthened by slip.


1993 ◽  
Vol 21 (4) ◽  
pp. 195-206 ◽  
Author(s):  
O. Engler ◽  
J. Palacios ◽  
W. Schäfer ◽  
E. Jansen ◽  
K. Lücke ◽  
...  

Texture measurements were carried out on 95% cold rolled and also on recrystallized high purity copper sheets by means of X-ray and neutron diffraction. The purpose of this study was to compare the results obtained by the two different measuring techniques and also to test the accuracy of the corrections normally used for deriving pole figures from X-ray data. In sheets containing texture inhomogeneities, X-ray pole figures were measured at different distances from the surface and two methods of producing averaged pole figures comparable to neutron measurements were applied. From the X-ray and from the neutron determined pole figures orientation distribution functions (ODF's) were calculated. The resulting differences which are less than 10% are discussed.


1998 ◽  
Vol 31 (1-2) ◽  
pp. 97-107 ◽  
Author(s):  
H. F. G. Abreu ◽  
J. R. Teodósio ◽  
C. S. Da Costa Viana

The texture change due to the increase of cold rolling reduction in Fe-Mo-Ni-C alloys is described. Orientation Distribution Functions (ODF) for samples cold rolled 80%, 90%, 97% and 99% are shown and discussed. Below 90% cold rolling reduction, the texture in these alloys is similar to that of cold rolled low carbon steels. Above 90% cold rolling reduction, a decrease in the component {001}〈110〉 is observed and the texture becomes weaker probably due to the development of shear bands. Magnetic age-annealing at 610°C for 1 h does not recrystallize completely these alloys. Samples cold rolled above 90% (97% and 99%) present an increase in the {001}〈110〉 component, this being responsible for a corresponding increase in the magnetic anisotropy of these alloys.


2008 ◽  
Vol 584-586 ◽  
pp. 343-348 ◽  
Author(s):  
Somjeet Biswas ◽  
Satyaveer Singh Dhinwal ◽  
Ayan Bhowmik ◽  
Satyam Suwas

Commercially Pure Magnesium initially hot rolled and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out upto 8 passes in a 90° die following routes A and Bc through a processing sequence involving two temperatures, namely 523 and 473 K. Texture and microstructure formed were studied using electron back scatter diffraction (EBSD) technique. In addition to significant reduction in grain size, strong <0002> fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence texture.


1997 ◽  
Vol 28 (3-4) ◽  
pp. 181-195 ◽  
Author(s):  
Th. Eschner ◽  
J.-J. Fundenberger

The description of textures in terms of texture components is an established conception in quantitative texture analysis. Recent developments lead to the representation of orientation distribution functions as a weighted sum of model functions, each corresponding to one anisotropic texture component. As was shown previously, an adequate texture description is possible with only a very small number of anisotropic texture components. As a result, textures and texture changes can be described by a small number of vivid parameters and their variations, namely by volume parts, half widths and ideal orientations.The texture of a tensile tested commercial aluminum alloy was investigated by decomposition into anisotropic components. The texture evolution during tensile testing is represented by the corresponding changes of the component parameters and compared with results from an iterative series expansion analysis.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1380
Author(s):  
Sofia Papadopoulou ◽  
Athina Kontopoulou ◽  
Evangelos Gavalas ◽  
Spyros Papaefthymiou

During forming, thickness reduction and thermal treatment affect the recrystallization and evolution of the crystallographic texture of metallic materials. The present study focuses on the consequences of rolling reduction of a widespread aluminum alloy with numerous automotive, marine and general-purpose applications, namely Al 5182. Emphasis is laid on the crystallographic texture and mechanical properties on both hot and cold-rolled semi-final products. In particular, a 2.8 mm-thick hot-rolled product was examined in the as-received condition, while two cold-rolled sheets, one 1.33 mm and the other 0.214 mm thick, both originating from the 2.8 mm material, were examined in both as-received and annealed (350 °C for 1 h) conditions. Electron back-scatter diffraction indicated the presence of a large percentage of random texture as well as a weak recrystallization texture for the hot-rolled product, whereas in the case of cold rolling the evolution of β-fiber texture was noted. In addition, tensile tests showed that both the anisotropy as well as the mechanical properties of the cold-rolled properties improved after annealing, being comparable to hot-rolled ones.


2011 ◽  
Vol 298 ◽  
pp. 203-208 ◽  
Author(s):  
Zi Li Jin ◽  
Wei Li ◽  
Yi Ming Li

With the help of orientation distribution function (ODF) analysis, experiments of different hot band grain microstructure 0.33% silicon steel were cold-rolled and annealed in the laboratory,to study the effect of the microstructure hot-rolled steel strip for cold rolled non-oriented silicon steel microstructure and texture of recrystallization annealing. The results show that hot rolled microstructure on cold rolled Non-Oriented Electrical Steel cold-rolled sheet evolution of texture and recrystallization have important influence, the quiaxed grain structure of steel by cold rolling and recrystallization annealing, the recrystallization speed than the fiber grain-based mixed crystals recrystallization fast , With the equiaxed grains made of cold rolled silicon steel after annealing the {110}<UVW> texture components was enhanced and {100}<uwv> texture components weakened. Different microstructure condition prior to cold rolling in the recrystallization annealing process the texture evolution has the obvious difference, the equiaxial grain steel belt cold rolling and annealing, has the strong crystal orientation. This shows that the equiaxed grain when hot microstructure is detrimental to the magnetic properties of cold-rolled non-oriented silicon steel to improve and increase.


Sign in / Sign up

Export Citation Format

Share Document