Simulation of Residual Stress in Hot Rolled Large Size H-Beams

2011 ◽  
Vol 704-705 ◽  
pp. 1370-1378 ◽  
Author(s):  
Guo Ming Zhu ◽  
Yong Lin Kang ◽  
Guang Ting Ma

The distribution of residual stress in hot rolled large size H-beams is complex due to the uneven temperature distribution on the final rolling cross-sections. In this paper, 3D simulation analysis is conducted on the residual stress field of cooled large H-beams and the transformation of residual stress field during the flange cutting based on the calculations of thermo-mechanical coupling whole rolling process. There are tensile stress in the flange and web connection areas and compressive stress in web. During the flange cutting process, tensile stress increases suddenly when the kerf arrives at the flange and web connection area, resulting in the brittle fracture of the web. The method of controlling the residual stress of large H-beams is also simulated. Improvement in the distribution of residual stress is achieved through the forced cooling of the outside flange or reduction of the temperature differences on the final rolling cross-sections.

2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


2015 ◽  
Vol 86 ◽  
pp. 761-764 ◽  
Author(s):  
Kang Li ◽  
Xue-song Fu ◽  
Rui-dong Li ◽  
Wen-long Zhou ◽  
Zhi-qiang Li

2010 ◽  
Vol 107 (5) ◽  
pp. 054904
Author(s):  
Da Xu ◽  
Xuesong Liu ◽  
Ping Wang ◽  
Jianguo Yang ◽  
Wei Xu ◽  
...  

1977 ◽  
Vol 99 (1) ◽  
pp. 18-23 ◽  
Author(s):  
M. R. Johnson ◽  
R. E. Welch ◽  
K. S. Yeung

A finite-element computer program, which takes into consideration nonlinear material behavior after the yield point has been exceeded, has been used to analyze the thermal stresses in railroad freight car wheels subjected to severe drag brake heating. The analysis has been used with typical wheel material properties and wheel configurations to determine the thermal stress field and the extent of regions in the wheel where the yield point is exceeded. The resulting changes in the residual stress field after the wheel has cooled to ambient temperature have also been calculated. It is shown that severe drag braking can lead to the development of residual circumferential tensile stresses in the rim and radial compressive stresses in the plate near both the hub and rim fillets.


Wear ◽  
2010 ◽  
Vol 269 (1-2) ◽  
pp. 86-92 ◽  
Author(s):  
G. Kermouche ◽  
J. Rech ◽  
H. Hamdi ◽  
J.M. Bergheau

Author(s):  
C. J. Aird ◽  
M. J. Pavier ◽  
D. J. Smith

This paper presents the results of a fundamental finite-element based study of the crack-closure effects associated with combined residual and applied loading. First, an analytical expression for a representative two-dimensional residual stress field is derived. This residual stress field contains a central compressive region surrounded by an equilibrating tensile region. The analytical expression allows the size and shape of the field to be varied along with the magnitude of the residual stress. The residual stress field is then used as a prescribed initial stress field in a finite element model, in addition to a far field applied load. By introducing cracks of increasing length into these models, charts of stress-intensity-factor versus crack length are produced for different relative magnitudes of residual stress and applied load and for different sizes and shape of the residual stress field. These charts provide insight into the way in which crack-tip conditions evolve with crack growth under conditions of combined residual and applied loading and also enable conditions of crack closure and partial closure to be identified.


2011 ◽  
Vol 70 ◽  
pp. 482-487
Author(s):  
G. Urriolagoitia-Sosa ◽  
A. Molina-Ballinas ◽  
Vistor Fernando Cedeño Verduzco ◽  
B. Romero-Ángeles ◽  
G. Urriolagoitia-Calderón ◽  
...  

This paper presents results obtained on the harmful effect that a lamination process can cause in AISI 1018 steel during the manufacturing process of spring bed components in fire guns. The sequel presented by the induction of a residual stress field is analyzed as well. It has been established that the consequences produced by the residual stresses, could be minimized either by changing the geometric configuration of the component, or changing the manufacturing process, or regeneration of the microstructure of the material by heat treatment. This work analyzes the effects that consistently become apparent by the regeneration of the microstructure of the material, such as; level of the residual stress field, possible fracture and micro-structural changes. This article evaluates both the longitudinal and transverse residual stress that takes place during the punching process of the spring bed made of AISI 1018 steel. The Crack Compliance Method (CCM) for measurement the residual stress field was applied. Additionally, it is applied a micro-structural analysis of the component. A comparison between experimental results of grain size is shown. From this study it is possible to validate the correct behavior of the mechanical component and certify the expected useful life.


Sign in / Sign up

Export Citation Format

Share Document