Flow Behavior of Ultra-High Strength Boron Steel at Elevated Temperature

2011 ◽  
Vol 704-705 ◽  
pp. 191-195
Author(s):  
Jun Bao ◽  
Hong Sheng Liu ◽  
Zhong Wen Xing ◽  
Bao Yu Song ◽  
Yu Ying Yang

Ultra-high strength boron steel is widely used in a new hot stamping technology which is hot formed and die quenched simultaneously in order to obtain stamping parts with 1500MPa tensile strength or higher. Tensile experiments were carried out with ultra-high strength boron steel in a range of temperature 500°C~860°Cand strain rate 0.01/s~1/s with the thermal simulation testing machine Gleeble 3800, and the stress-strain curves were obtained. The influences of the deformation temperature and strain rate on the stress-strain curves were analyzed. The results show that hot behavior at elevated temperature of ultra-high strength boron steel consists of strain hardening and dynamic recovery mechanism, which can be accurately described by the mathematic model. Keywords: Ultra-high strength boron steel, hot stamping, hot flow behavior

2016 ◽  
Vol 879 ◽  
pp. 2020-2025 ◽  
Author(s):  
Beatrice Valoppi ◽  
Stefania Bruschi ◽  
Andrea Ghiotti

In this paper, tensile tests were performed at elevated temperature and strain rate in order to investigate the plastic flow behavior, anisotropic characteristics and microstructural evolution of Ti6Al4V sheets under testing conditions similar to the ones experienced during hot stamping operations. It is shown that the Ti6Al4V anisotropic characteristics under the investigated forming conditions, different from the ones of the superplastic regime, are influenced by the variation of the material texture as a function of the testing temperature. The Ti6Al4V flow stress behavior was analyzed as a function of the deformation temperature and strain rate. Afterwards, the Arrhenius constitutive model was proposed to predict the flow behavior of Ti6Al4V sheets at elevated temperature and strain rate. The statistical analysis of its predictive capabilities suggests that the Arrhenius model guarantees a good accuracy in reproducing the flow behavior of Ti6Al4V sheets.


2014 ◽  
Vol 966-967 ◽  
pp. 209-218
Author(s):  
Paolo F. Bariani ◽  
Stefania Bruschi ◽  
Andrea Ghiotti ◽  
Francesco Medea

Hot stamping of quenchenable high strength steels represents the most promising forming technology for the manufacturing of safety and crash relevant car parts. In such process, the manganese-boron steel 22MnB5 is homogeneously austenitized, formed and subsequently quenched in one process step, so that complex geometric structural components can be formed with an ultimate tensile strength up to 1500 MPa. Due to the high temperature, no lubrication is used during the process with consequent high wear and reduced service-life of the dies. Commercial available steel blanks usually present an Al-Si coating that has been specifically developed as a protection from oxidation and decarburization and, at the same time, has proved positive influence also on the decreasing the friction at interface between the blank and the dies during the forming. Although such coating is generally accepted as the only lubrication medium in hot stamping, its performances are considered not appropriate for a good lubrication. The paper presents the comparison of the standard Al-Si coating and a new Zn coating when applied to metal sheets in hot stamping. A novel apparatus to investigate the tribological conditions during sheet metal working processes is presented. In addition to the control of mechanical (i.e. normal pressure) and kinematic parameters (i.e. sliding speed, sliding length), the developed testing machine permits to reproduce the thermal fields and monitor the thermal conditions of the sheet and tool materials. Experiments were carried out on Zn coated 22MnB5 sheets in the range between 700° and 950°C and compared with the performances of the commercial Al-Si coating. The coating performances are investigated for different heating temperatures and soaking times.


2013 ◽  
Vol 749 ◽  
pp. 498-503
Author(s):  
Cheng Xi Lei ◽  
Jun Jia Cui ◽  
Zhong Wen Xing ◽  
Hao Zhao

Tensile experiments were carried out on advanced high strength steel (AHSS) by the test machine Gleeble3500, under the temperature ranging from 650 to 850 and the strain rate of 0.1/s~5/s, and the corresponding stress-strain curves were obtained. The peak stress level decreases with the increasing of deformation temperature or the decreasing of strain rate, which can be represented by a ZenerHollomon parameter in a linear equation. A revised model describing the relationships between the peak stress, strain rate and temperature of advanced high strength steel at elevated temperatures was proposed by compensation of strain and strain rate. The comparison of the predicted and experimental results of stressstrain curve can prove the good predictive power of the model, the Adj. R-Square between the peak stress and the linear equation was reached to 0.97.


2008 ◽  
Vol 575-578 ◽  
pp. 299-304 ◽  
Author(s):  
Jun Bao ◽  
Zhong Wen Xing ◽  
Yu Ying Yang

The quenchable boron steel is a novel type of ultra high strength steel used for automotive parts so as to reduce the weight of the whole automobile. The hot stamping processing experiments for bending parts were studied. The influence of the hot stamping processing parameters, such as the heating temperature, the heat holding time and the cooling water flow velocity, on the mechanics properties and microstructure of the hot stamping parts is obtained. And then the optimal ranges of these parameters are determined, which provides a basis for the control of the hot stamping process applied in complicated shape parts’ production.


2012 ◽  
Vol 184-185 ◽  
pp. 333-336 ◽  
Author(s):  
Hui Xie ◽  
Ya Ke Chen

Abstract. As an innovative process of manufacturing ultra high strength steel (UHSS), hot stamping or press hardening is a multi-physical coupling process with complex changes in thermal, mechanical and phase transformation. In this work, in order to study heat transfer from workpiece to upper & lower die and cooling water, a new approach, named Bulk Flow, is adopted to model the cooling ducts and to simulate heat transfer in hot stamping die. Not only can tool design, cooling duct layout and process parameters be studied and optimized to increase the cooling rate and to homogenize temperature distribution in workpiece, but also, the precision of hot stamping simulation be improved. The experimental results of boron steel components formed by the designed die show that the martensite is homogenous. It indicates the feasibility of the bulk flow method.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1136 ◽  
Author(s):  
Ling Kong ◽  
Yan Peng ◽  
Caiyi Liu

Traditional hot-stamping products have super-high strength, but their plasticity is usually low and their integrated mechanical properties are not excellent. Functionally graded property structures, a relatively novel configuration with a higher material utilization rate, have increasingly captured the attention of researchers. Hot stamping parts with tailored properties display the characteristics of local high strength and high plasticity, which can make up for the limitations of conventional hot stamping and optimize the crash safety performance of vehicles. This new idea provides a means of personalized control in the hot-stamping process. In this paper, a new strategy of local induction heating and press hardening was used for the hot stamping of boron steel parts with tailored properties, of which the microstructure from the hard zone to the soft zone shows a gradient distribution consisting of a martensite phase, multiphase and initial phase, with the hardness ranging from 550 HV to 180 HV. The re-deformation characteristics of hot stamping parts with tailored properties have been studied through the uniaxial tensile test, in cooperation with digital image correlation (DIC) and electron backscattered diffraction (EBSD) techniques. The experiments show that there are easily observable strain distribution characteristics in the re-deformation of hot stamping parts with tailored properties. In the process of tensile deformation, the initial phase zone takes the role of deformation and energy absorption, with the maximum strain before necking reaching 0.32. The local misorientation of this zone was high, and a large number of low angle grain boundaries were formed, while the proportion of small angle grain boundaries increased from 13.5% to 63.3%, and the average grain size decreased from 8.15 μm to 3.43 μm. Meanwhile, the martensite zone takes on the role of anti-collision protection, with a maximum strain of only 0.006, and its local misorientation is mostly unchanged. The re-deformation experimental results show that the hot stamping of boron steel parts with tailored properties meets the functional requirements of a hard zone for anti-collision and a soft zone for energy absorption, suitable for automobile safety parts.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2098 ◽  
Author(s):  
Olga Yakovtseva ◽  
Maria Sitkina ◽  
Ahmed O. Mosleh ◽  
Anastasia Mikhaylovskaya

Increasing the strain rate at superplastic forming is a challenging technical and economic task of aluminum forming manufacturing. New aluminum sheets exhibiting high strain rate superplasticity at strain rates above 0.01 s−1 are required. This study describes the microstructure and the superplasticity properties of a new high-strength Al-Zn-Mg-based alloy processed by a simple thermomechanical treatment including hot and cold rolling. The new alloy contains Ni to form Al3Ni coarse particles and minor additions of Zr (0.19 wt.%) and Sc (0.06 wt.%) to form nanoprecipitates of the L12-Al3 (Sc,Zr) phase. The design of chemical and phase compositions of the alloy provides superplasticity with an elongation of 600–800% in a strain rate range of 0.01 to 0.6/s and residual cavitation less than 2%. A mean elongation-to-failure of 400% is observed at an extremely high constant strain rate of 1 s−1. The strain-induced evolution of the grain and dislocation structures as well as the L12 precipitates at superplastic deformation is studied. The dynamic recrystallization at superplastic deformation is confirmed. The superplastic flow behavior of the proposed alloy is modeled via a mathematical Arrhenius-type constitutive model and an artificial neural network model. Both models exhibit good predictability at low and high strain rates of superplastic deformation.


2015 ◽  
Vol 782 ◽  
pp. 124-129
Author(s):  
Wen Wen Du ◽  
Qian Wang ◽  
Lin Wang ◽  
Ding Wang

The high strength steel which was subjected with isothermal heat treatment at three different temperatures, namely 330°C, 350°Cand 380°C after different quenching temperature namely 880°C and 900°C,was investigated in this paper. The quasi-static and dynamic mechanical properties of new high strength steel was tested by universal material testing machine and Split Hopkinson Pressure Bar (SHPB). Experimental results have showed that the yield strength and tensile strength of the steel reach 1100MPa and 1400MPa respectively. Hardness, yield strength and toughness are found to decrease with the consequently increasing of isothermal temperature under the same quenching temperature. The compression properties of the steel under quenching temperature of 880°C are higher than that of 900°C with the same isothermal temperature. It can be found that the steel which is subjected with isothermal heat treatment show strain rate sensitivity under high velocity impact. When isothermal temperature is set 380°C, the steel exhibits the most obvious strain rate hardening effect.


Author(s):  
Etienne Caron ◽  
Kyle J. Daun ◽  
Mary A. Wells

Distributed mechanical properties can be obtained in ultra high strength steel parts formed via hot forming die quenching (HFDQ) by controlling the cooling rate and microstructure evolution during the quenching step. HFDQ experiments with variable cooling rates were conducted by quenching Usibor® 1500P boron steel blanks between dies pre-heated up to 600°C. The heat transfer coefficient (HTC) at the blank / die interface, which is used to determine the blank cooling rate, was evaluated via inverse heat conduction analysis. The HTC was found to increase with die temperature and stamping pressure. This heat transfer coefficient increase was attributed to macroscopic flattening of the boron steel blank as well as microscopic deformation of surface roughness peaks. At the end of the hot stamping process, the HTC reached a pressure-dependent steady-state value between 4320 and 7860 W/m2·K when the blank and die temperatures equalize.


Sign in / Sign up

Export Citation Format

Share Document