scholarly journals High Strain Rate Superplasticity in Al-Zn-Mg-Based Alloy: Microstructural Design, Deformation Behavior, and Modeling

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2098 ◽  
Author(s):  
Olga Yakovtseva ◽  
Maria Sitkina ◽  
Ahmed O. Mosleh ◽  
Anastasia Mikhaylovskaya

Increasing the strain rate at superplastic forming is a challenging technical and economic task of aluminum forming manufacturing. New aluminum sheets exhibiting high strain rate superplasticity at strain rates above 0.01 s−1 are required. This study describes the microstructure and the superplasticity properties of a new high-strength Al-Zn-Mg-based alloy processed by a simple thermomechanical treatment including hot and cold rolling. The new alloy contains Ni to form Al3Ni coarse particles and minor additions of Zr (0.19 wt.%) and Sc (0.06 wt.%) to form nanoprecipitates of the L12-Al3 (Sc,Zr) phase. The design of chemical and phase compositions of the alloy provides superplasticity with an elongation of 600–800% in a strain rate range of 0.01 to 0.6/s and residual cavitation less than 2%. A mean elongation-to-failure of 400% is observed at an extremely high constant strain rate of 1 s−1. The strain-induced evolution of the grain and dislocation structures as well as the L12 precipitates at superplastic deformation is studied. The dynamic recrystallization at superplastic deformation is confirmed. The superplastic flow behavior of the proposed alloy is modeled via a mathematical Arrhenius-type constitutive model and an artificial neural network model. Both models exhibit good predictability at low and high strain rates of superplastic deformation.

2011 ◽  
Vol 82 ◽  
pp. 57-62 ◽  
Author(s):  
Sha Sha Wang ◽  
Min Hong Zhang ◽  
Ser Tong Quek

This paper presents a laboratory experimental study on the effect of high strain rate on compressive behavior of plain and fiber-reinforce high-strength concrete (FRHSC) with similar strength of 80-90 MPa. Steel fibers, polyethylene fibers, and a combination of these were used in the FRHSC. A split Hopkinson pressure bar equipment was used to determine the concrete behavior at strain rates from about 30 to 300 s-1. The ratio of the strength at high strain rates to that at static loading condition, namely dynamic increase factor (DIF), of the concretes was determined and compared with that recommended by CEB-FIP code. Fracture patterns of the specimens at high strain rates are described and discussed as well. Results indicate that the CEB-FIP equation is applicable to the plain high strength concrete, but overestimates the DIF of the FRHSC at strain rates beyond a transition strain rate of 30 s-1. Based on the experimental results, a modified equation on DIF is proposed for the FRHSC.


2006 ◽  
Vol 317-318 ◽  
pp. 403-406 ◽  
Author(s):  
Kentarou Chihara ◽  
Yutaka Shinoda ◽  
Takashi Akatsu ◽  
Fumihiro Wakai

High-strain-rate superplasticity and low-temperature superplasticity are favorable for making the use of superplastic forming for engineering ceramics even more wide spread. In this study, a silicon nitride based nanocomposite was developed for the purpose of improving the superplasticity. An amorphous powder was prepared by mechanical alloying of silicon nitride and metal titanium. A Si3N4-Si2N2O-TiN nanocomposite was fabricated by hot isostatically pressing the amorphous powder compact. A compression test was performed in the temperature range of 1573 K to 1873 K. The nanocomposite could be deformed at a strain rate of 10-2s-1, which was more than 100 times faster than that available for conventional superplastic Si3N4 at 1873 K. Furthermore, the nanocomposite was superplastically deformed in compression at low temperatures from 1573 K to 1673 K. The stress exponent and the activation energy of the nanocomposite were close to those of submicron-silicon nitride.


2014 ◽  
Vol 1063 ◽  
pp. 59-64
Author(s):  
Ming Tu Ma ◽  
Yan Zhao ◽  
Gang Fang ◽  
Yi Feng

In this paper, the high speed tension experiments have been performed on ultra high strength bullet proof steel. The samples were cut from the bullet proof steel plate after hard-module quenching with thickness of 3.7 mm. The mechanical properties at strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1 were carried out on MTS810, while those at higher strain rates of 200 s-1, 500s-1 and 1000s-1 were tested on HTM5020 high speed tension tester and Hopkinson bar. The data from the high-speed tension experiments were fitted via Johnson-Cook constitutive equation, and the fracture surface of each sample was analyzed by SEM. The results indicate that, the shoot-resistance capability of bullet proof steel is closely related to its strength, thickness and flow behaviors under high strain rate. The shoot-resistance will be improved in the case of higher strength and better matching between strength and elongation. The Johnson-Cook equation fitted via experimental data provides fundament to numerical simulation. With the increase of strain rate, the size and depth of dimple trend to decrease and the depth of dimple changes less in steel with lower strength and higher elongation. The SEM analysis of fracture is benefit for further understanding of deformation and fracture mode under high strain rate.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


2011 ◽  
Vol 82 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Xuehui Gan ◽  
Jianhua Yan ◽  
Bohong Gu ◽  
Baozhong Sun

The uniaxial tensile properties of 4-step 3D braided E-glass/epoxy composites under quasi-static and high-strain rate loadings have been investigated to evaluate the tensile failure mode at different strain rates. The uniaxial tensile properties at high strain rates from 800/s to 2100/s were tested using the split Hopkinson tension bar (SHTB) technique. The tensile properties at quasi-static strain rate were also tested and compared with those in high strain rates. Z-transform theory is applied to 3D braided composites to characterize the system dynamic behaviors in frequency domain. The frequency responses and the stability of 3D braided composites under quasi-static and high-strain rate compression have been analyzed and discussed in the Z-transform domain. The results indicate that the stress-strain curves are rate sensitive, and tensile modulus, maximum tensile stress and corresponding tensile strain are also sensitive to the strain rate. The tensile modulus, maximum tensile stress of the 3D braided composites are linearly increased with the strain rate. With increasing of the strain rate (from 0.001/s to 2100/s), the tensile failure of the 3D braided composite specimens has a tendency of transition from ductile failure to brittle failure. The magnitude response and phase response is very different in quasi-static loading with that in high-strain rate loading. The 3D braided composite system is more stable at high strain rate than quasi-static loading.


2014 ◽  
Vol 611-612 ◽  
pp. 167-172 ◽  
Author(s):  
Piotr Skubisz ◽  
Łukasz Lisiecki

Paper presents deformation behaviour and microstructural response of selected medium-carbon high-strength steels commonly used for high-duty components deformed under high-strain-rate and warm work temperature range. The investigation of material behaviour is oriented at analysis of hot and warm workability of material and microstructure evolution resultant from deformation mechanisms, strain induced recrystallization and hardening at temperatures of lower forging regime and high strain rate deformation. The effect of these factors on microstructure after forging and subsequent direct-cooling was studied. Metallographic work aided with numerical methods of simulation of the metal flow and microstructure evolution during forging were used to correlate thermo-mechanical parameters observed with microstructure and mechanical properties after forging and cooling.


2012 ◽  
Vol 562-564 ◽  
pp. 688-692 ◽  
Author(s):  
Deng Yue Sun ◽  
Jing Li ◽  
Fu Cheng Zhang ◽  
Feng Chao Liu ◽  
Ming Zhang

The influence of the strain rate on the plastic deformation of the metals was significant during the high strain rate of loading. However, it was very difficult to obtain high strain rate data (≥ 104 s-1) by experimental techniques. Therefore, the finite element method and iterative method were employed in this study. Numerical simulation was used to characterise the deformation behavior of Hadfield steel during explosion treatment. Base on experimental data, a modified Johnson-Cook equation for Hadfield steel under various strain rate was fitted. The development of two field variables was quantified during explosion hardening: equivalent stress and strain rates.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


Sign in / Sign up

Export Citation Format

Share Document