The Simulated Calculation and Optimizing Experimental Research of the Residual Stress of the Heavy Rail Straightening

2011 ◽  
Vol 704-705 ◽  
pp. 296-301
Author(s):  
Lin Chen ◽  
Jian Guo Wang ◽  
Ge Li

The finite element 3D model of heavy rail roller complex straightening is established by the finite element method in this paper.The straightening process is optimized by orthogonal experimentation and regression analysis. The formative mechanics and the regulation of the residual stress in the process of straightening are researched. The results of the simulation show that: whatever is on the basement of the residual stress or flatness, the new schedule is better than the real field one, residual stress is controlled within 250Mpa.

2018 ◽  
Vol 8 (8) ◽  
pp. 1338 ◽  
Author(s):  
José Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes the first self-propelled floating dredging machine designed and executed by Agustín de Betancourt in 1810 to dredge the port of Kronstadt (Russia). With this objective, a study of computer-aided engineering (CAE) has been carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite element method, of the 3D model which is reliable under operating conditions. The results have shown that the system of inertia drums proposed by Betancourt manages to dissipate the tensions between the different elements, locating the highest stresses in the links of the bucket rosary, specifically at the point of contact between links. Similarly, the maximum displacements and the greatest deformations (always associated with these points of greater stress), are far from reaching the limits of breakage of the material used in its construction, as well as the safety coefficient of the invention, confirming that the mechanism was oversized, as was generally the case at the time. This analysis highlights the talent of the Spanish engineer and his mastery of mechanics, in an invention, the first of its kind worldwide, which served the Russian Empire for many years.


The wave transmission characteristics of rectangular, double-ridge, trapezoidal-ridge and anti-trapezoidal ridge waveguides are analyzed using the finite-element method. The cut-off wavelength and attenuation of these waveguides are calculated. The result shows that anti-trapezoidal ridge waveguides perform better than rectangular, double-ridge and trapezoidal-ridge waveguides. The variation of bandwidth and attenuation with respect to change in the angle of physical ridge structures has been studied while migrating from rectangular to anti-trapezoidal ridge structures.


Author(s):  
Dennis K. Williams

The mechanical roll expansion of heat exchanger tubes into tubesheets containing TEMA grooves, which are thought to aid in the mechanical integrity of the tube-to-tubesheet (TTT)joint, has for many years provided an acceptable means of completing a TTT joint. Inherent with the intentional roll expansion of the tube is the creation of a tensile residual stress field within the tube that is greatest in the transition region between the expanded and unexpanded zones of the tube. An additional complicating factor in the tube-to-tubesheet joint design is the choice of utilizing a seal weld or a “full strength” weld at the tube end in conjunction with a level of roll expansion quantified by the degree of tube wall reduction. This paper presents the results of an initial study of the mechanical roll expansion of 1 inch diameter tubes into a typical TEMA-R designed tubesheet, utilizing two grooves in the tubesheet hole. Two combinations of tube and tubesheet materials are studied that include duplex stainless steel tubes and tubesheet, while the second combination includes type 321 tubes roll expanded into a 2-1/4 Cr-1 Mo tubesheet, clad with 321 SS overlay. The predicted residual stress fields are calculated by the finite element method and employ a simplified two dimension nonlinear axisymmetric model.


2014 ◽  
Vol 494-495 ◽  
pp. 478-481
Author(s):  
Zheng Yong Cheng ◽  
Wen Juan Gu ◽  
Xiao Hui Zhang ◽  
Bang Gui He ◽  
Ying Li

The 3D model of the lathe tool is established by using the Pro/E of 3D design software, then imported 3D model into the finite element software Workbench, and analyzed its statics using the finite element method, and got the stress figure and strain figure and total deformation figure while the lathe tool undertaking the cutting force, through the analysis it shows that the strength of the lathe tool can meet the processing requirements.


2013 ◽  
Vol 102 (10) ◽  
pp. 3678-3686 ◽  
Author(s):  
Yoshihiro Hayashi ◽  
Takahiro Miura ◽  
Takuya Shimada ◽  
Yoshinori Onuki ◽  
Yasuko Obata ◽  
...  

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Xiao-Bo Zuo ◽  
Jian-Min Wang ◽  
Zi-Qiang Yin ◽  
Sheng-Yi Li

Angled-surface slot-compensated hydrostatic bearing (ASHB) is a novel type of hydrostatic bearing which is potentially applicable in rotary tables. However, it has not been sufficiently studied in available literature. In this paper the mathematic model for ASHB was built and solved by the finite element method (FEM). The influence of semicone angle on static and dynamic performance characteristics was theoretically investigated. The simulated results have been compared with that of the traditional fixed slot-compensated hydrostatic bearing (FSHB) on the same geometric and operating conditions. Results show that the performance of ASHB is better than that of FSHB; the studied bearing with a large semicone angle is superior in power consumption; the clearance width ratio of the restricting gap to the bearing gap has an obvious effect on bearing performance.


1993 ◽  
Vol 115 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Y. Ueda ◽  
M. G. Yuan

The source of residual stresses in the vicinity of a weld may be expressed in terms of inherent strains. The characteristics of the inherent strain distributions in butt welds are investigated. It is found that the patterns vary little with changes in the welding conditions and sizes of the welded plates. With some assumptions, simple formulas are derived for the distribution and magnitude of inherent strain in a butt weld. A method of predicting the residual stress in a butt-welded plate using the characteristics of inherent strain distributions is presented. The validity of the method is confirmed by thermal elasto-plastic analysis using the finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document