Phase Relationships in the Y–Fe–V Ternary System at 773 K

2011 ◽  
Vol 704-705 ◽  
pp. 475-479
Author(s):  
Shun Kang Pan ◽  
Rui Yan ◽  
Huai Ying Zhou ◽  
Li Chun Cheng ◽  
Qing Rong Yao ◽  
...  

The isothermal section of the phase diagram of the ternary system Y–Fe–V at 773 K was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. It consists of 9 single-phase regions, 16 two-phase regions and 8 three-phase regions. The ternary compound YFe12-xVx (1.5≤x≤2.7, space group I4/mmm) with Mn12Th-type structure was confirmed in this system. At 773 K, the maximum solid solubility of V in Fe, and YFe2, is about 23 at.%, and 3 at.%, respectively, Fe in V is about 22 at.%. And that of Y in Fe, FeV and V don′t exceed 1 at.%.

Author(s):  
Xuehong Cui ◽  
Jinming Zhu ◽  
Ketong Luo ◽  
Jianlie Liang

Abstract Phase relationships in the Ce-Nd-B ternary system at 773 K were investigated by means of X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. Six borides, i. e. CeB4, CeB6, NdB4, NdB6, NdB66 and Nd2B5 are confirmed in this work. No ternary compound was observed. CeB4 and NdB4 were discovered to form the continuous solid solution phase (Ce,Nd)B4, CeB6 and NdB6 also form the solid solution phase (Ce,Nd)B6. The maximum solid solubility of Ce in (Ce,Nd)2B5 phase is 46.5 at.%. The isothermal section of the Ce-Nd-B ternary system at 773 K consists of 3 three-phase regions, 7 two-phase regions and 7 single- phase regions.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 871
Author(s):  
Yun Zhao ◽  
Li-Bin Liu ◽  
Li-Gang Zhang ◽  
Jia-Jun Yang ◽  
Patrick J. Masset

The polythermal section of Ti-22Al-xNb (30–78 at.% Ti) in the Ti-Al-Nb system was studied using X-ray diffraction analysis (XRD), differential thermal analysis (DSC), and electron probe micro-analysis (EPMA). No new ternary compounds were found in this work. The polythermal section has five three-phase regions, nine two-phase regions, and three single-phase regions. The O phase transition is confirmed to occur below 1000 °C. A four-phase invariant reaction β + σ → O + δ was found at 931 °C.


2010 ◽  
Vol 105-106 ◽  
pp. 192-194 ◽  
Author(s):  
Chun Long Guan ◽  
Guo Qin Liu ◽  
Ying Chun Shan

Cr2AlC ceramics (Cr:Al:C =1:1.2:1 mol.%) were synthesized by powder metallurgical method in argon in the temperature range of 700 to1250°C using Cr, Al and graphite powders as the initial materials. The phase relationships during reaction in the ternary system Cr-Al-C were investigated. The products were characterized by X-ray diffraction (XRD) and differential thermal analysis (DTA). It was found that Cr9Al17, Al8Cr5 and Cr2Al intermediate phases were formed in turn with increase of temperature. Up to 1050°C, with consumption of Cr9Al17 and Al8Cr5 phases completely, the amount of Cr2Al increased significantly. Single phase Cr2AlC with small amount of Cr7C3 was produced until 1250°C. Combined with the results of differential thermal analysis (DTA) and X-ray diffraction (XRD), it is revealed that Cr2AlC phase is formed by the reaction of Cr–Al intermetallic compounds, Cr, Al and graphite. In addition, the reaction equations of the process from 660 to1250°C were given.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


1989 ◽  
Vol 169 ◽  
Author(s):  
Winnie Wong‐Ng ◽  
Lawrence P. Cook ◽  
Michael D. Hill ◽  
Boris Paretzkin ◽  
E.R. Fuller

AbstractThe influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R=Y, Eu and Nd, was studied and compared with that of a high Tc superconductor mixed‐lanthanide phase Ba2(Y.75Eu.125Nd 125)Cu3O6+xThese materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160°C and quenched into a helium gas container cooled by liquid nitrogen. The SEM micrographs of these samples showed the progressive chnages in features of the microstructures from sintering and grain growth through melting and then recrystallization from the melt. The addition of the SEM technique in conjunction with X‐ray diffraction has been helpful in the study of phase equilibria in this system.


2020 ◽  
Vol 62 (7) ◽  
pp. 1123
Author(s):  
Е.В. Богданов ◽  
Е.И. Погорельцев ◽  
А.В. Карташев ◽  
М.В. Горев ◽  
М.С. Молокеев ◽  
...  

Abstract The (NH_4)_3VOF_5 crystals have been synthesized and their homogeneity and single-phase structure has been established by the X-ray diffraction, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy studies. The investigations of the temperature dependences of specific heat, entropy, strain, and pressure susceptibility show the occurrence of three phase transitions caused by the structural transformations in the (NH_4)_3VOF_5 crystals. The T – p phase diagram shows the temperature limits of stability of the crystalline phases implemented in (NH_4)_3VOF_5. The optical and dielectric studies disclose the ferroelastic nature of the phase transitions. An analysis of the experimental data together with the data on the isostructural (NH_4)_3VO_2F_4 crystal makes it possible to distinguish the physical properties of oxyfluorides containing vanadium of different valences (IV and V).


Author(s):  
Ketong Luo ◽  
Jianlie Liang ◽  
Jinming Zhu ◽  
Xuehong Cui

Abstract The Fe-rich corner of the Ce–Nd–B–Fe quaternary system at 773 K has been experimentally investigated by means of X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. No quaternary compound was observed in this system. Ce2Fe14B and Nd2Fe14B were found to form the continuous solid solution (Ce,Nd)2Fe14B. Ce-Fe4B4 and NdFe4B4 also form the solid solution (Ce,Nd)-Fe4B4. The isothermal section consists of 8 three-phase regions and 2 four-phase regions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2400 ◽  
Author(s):  
Zoulikha Hebboul ◽  
Amira Ghozlane ◽  
Robin Turnbull ◽  
Ali Benghia ◽  
Sara Allaoui ◽  
...  

We present a cost- and time-efficient method for the controlled preparation of single phase La(IO3)3 nanoparticles via a simple soft-chemical route, which takes a matter of hours, thereby providing an alternative to the common hydrothermal method, which takes days. Nanoparticles of pure α-La(IO3)3 and pure δ-La(IO3)3 were synthesised via the new method depending on the source of iodate ions, thereby demonstrating the versatility of the synthesis route. The crystal structure, nanoparticle size-dispersal, and chemical composition were characterised via angle- and energy-dispersive powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy.


2013 ◽  
Vol 802 ◽  
pp. 119-123
Author(s):  
Supamas Wirunchit ◽  
Rangson Muanghlua ◽  
Supamas Wirunchit ◽  
Wanwilai Vittayakorn ◽  
Naratip Vittayakorn

Nanocrystalline barium zirconium titanate, BaZr0.4Ti0.6O3, was synthesized successfully via the sonochemical process. The effects of reaction time on the precipitation of Ba(Zr,Ti)O3 particles were investigated briefly. The crystal structure as well as molecular vibrations and morphology were investigated. X-ray diffraction indicated that the powders exhibited a single phase perovskite structure, without the presence of pyrochlore or unwanted phases at the reaction time of 60 min. Nanocrystals were formed before being oriented and aggregated into large particles in aqueous solution under ultrasonic irradiation. A scanning electron microscopy (SEM) photograph showed the BZT powder as spherical in shape with uniform nanosized features.


2008 ◽  
Vol 373-374 ◽  
pp. 273-276 ◽  
Author(s):  
Yu Jiang Wang ◽  
Xin Xin Ma ◽  
Guang Wei Guo

The electrodeposition of aluminum on 316L stainless steel from a molten salts based on chloride has been studied. The surface morphology of the aluminum layer has been examined through scanning electron microscope (SEM) and the structure of the aluminum layer has been analyzed by X-ray diffraction (XRD). The thickness of the deposited aluminum layer has been measured by the method of cross-section scan. It has been suggested that a white, smooth, non-porous and a high purity aluminum layer can be obtained on 316L stainless steel from the ternary chloride molten salts (AlCl3 – NaCl - KCl). And the structure of the aluminum layer was single-phase.


Sign in / Sign up

Export Citation Format

Share Document