Effect of Severe Plastic Deformation at Ambient Temperature on Microstructures and Mechanical Properties of Aluminum Alloy 2519

2013 ◽  
Vol 745-746 ◽  
pp. 298-302
Author(s):  
Ying Liu ◽  
Ruo Lin Cheng ◽  
Jing Tao Wang ◽  
He Zhang ◽  
Xin Ming Zhang

The effect of severe plastic deformation at ambient temperature on microstructures and mechanical properties of aluminum alloy 2519 was investigated by means of tensile test, micro-hardness test, optical microscopy and scanning electron microscopy. The results showed that tensile strength of as-queched 2519 alloy was greatly enhanced to nearly 550MPa (ultimate tensile strength, UTS) and 520MPa (yield strength, YS) by severe cold rolling or equal channel angular processing (ECAP) while the elongation decreased to 5%. The 2519 alloy could obtain quite well mechanical properties as much as 80 % and 12 passes cold rolling deformation. This indicated that pre-deformation by ECAP is effective in improving the mechanical properties of 2519 alloy by grain refinement, strain aging and high density dislocations.

2018 ◽  
Vol 941 ◽  
pp. 1523-1528 ◽  
Author(s):  
Sang Min Lee ◽  
Yong Deok Im ◽  
Ryo Matsumoto ◽  
Hiroshi Utsunomiya

Recently, it was reported that Cu-Al alloys of low stacking fault energy (SFE) processed by severe plastic deformation show excellent tensile properties due to TWIP (Twinning induced Plasticity) phenomenon. In this study, Cu-15at% Al sheets were heavily processed by conventional multi-pass cold rolling up to 90% in reduction in thickness without annealing. In order to reveal the change in mechanical properties and the microstructure evolution, tensile test, hardness test, optical microscopy (OM) and electron backscattering diffraction (EBSD) analysis were performed. Deformation twinning due to low SFE is observed even in the case of low reduction in thickness. As the reduction increases, grains are refined by intersections of shear bands. It is found that the balance of strength and elongation of the processed sheets is comparable to those by severe plastic deformation followed by annealing in literature.


2020 ◽  
Vol 1003 ◽  
pp. 31-36
Author(s):  
Marko Vilotic ◽  
Li Hui Lang ◽  
Sergei Alexandrov ◽  
Dragisa Vilotic

Compared to conventional metal forming methods, processing by severe plastic deformation is mostly used to improve the mechanical properties and not for the shaping of a product. Processed material usually has an average crystal grain size of less than a micron and as a result, the material exhibits improvements in most of the mechanical properties, such as yield and ultimate tensile strength, microhardness, sufficiently high workability, good corrosion resistance, and implant biocompatibility and others. In this paper, a brief review of the processing by severe plastic deformation was presented, including the benefits, major methods, and the application. Additionally, a brief review of two methods made by authors was made.


2020 ◽  
pp. 93-101
Author(s):  
Serhii Bondarenko ◽  
Olexandr Grydin ◽  
Yaroslav Frolov ◽  
Olga Kuzmina ◽  
Oleksandr Bobukh

Specialists of metallurgy and mechanical engineering are intensively working at materials with controlled properties. In fact, at this stage we are already talking about the design of new materials for the specific tasks of the industry. One of the ways to achieve the regulated mechanical properties of metal products is to use the influence of plastic deformation with its different parameters in individual sections of the deformable material. In this study, we studied the effect of cold rolling on the properties of a strip of aluminum alloy EN AW-1050 with artificially created differences in the deformation parameters in different parts of the cross section of the profile. For this, a pre-shaped sample was prepared by conducting joint cold rolling of a strip of the specified material 420 mm long, 180 mm wide and 2.9 mm thick with a steel profiling tape 80 mm wide and 2 mm thick superimposed on it (length of an aluminum strip and steel profiling tape are the same). As a result of joint deformation, the steel strip rolled into the base metal and changed the geometry of the cross section and the properties of the obtained strip. Next, the obtained strip was subjected to heat treatment and rolled in a duo mill. After rolling, thin samples were made from fabricated flat strips to assess mechanical properties, in particular tensile tests were performed according to ISO 6892-1: 2009 and Brinell hardness tests were performed according to ISO 6506-1: 2014. Experimental studies of cold rolling of strips with profiled cross section of aluminum alloy EN AW-1050 were carried out. The possibility of forming heterogeneous properties in a flat aluminum strip by cold plastic deformation is shown and the maximum average values of the increase in the main indicators of mechanical properties on individual elements of the strip are determined. The maximum difference between the mechanical properties of the thick and thin elements of the profiled strip is observed in the hardness index and reaches 37.5%. The maximum obtained average value of the increase in yield strength and tensile strength is 26% and 18%, which is achieved with true deformation of the thick element of the profiled strip 0.165 and 0.234.


2015 ◽  
Vol 817 ◽  
pp. 283-287
Author(s):  
Jing Fan Hua ◽  
Ren Bo Song ◽  
San Chuan Yu ◽  
Zhe Gao ◽  
Wei Jie Wanglin

The effect of annealing temperature on microstructures and mechanical properties of 1000MPa grade cold rolling steel was studied under the condition of ultra-fast cooling in the present investigation. The component of the experimental steel has been designed and the carbon content is 0.13%[wt]. A small amount of V and Nb were added to the steel. Simulated annealing steel experiment has been carried out in the laboratory condition. The experimental steel was heated to 780°C, 800°C, 820°C, 840°C, 860°C for 80s, then slowly cooled to 680°C, and finally water quenched to room temperature. The aging temperature was 240°C(for 240s) and then the steel was air cooled to room temperature. Using optical microscope, scanning electron microscopy (SEM) and tensile testing machine to analyze and test the microstructures and properties of the steel after annealing process. The result showed that the microstructures of the annealed steel was martensite and ferrite, and when the annealing temperature was 820°C, the tensile strength could reach 999MPa, elongation could reach 13.3%. It was easy to see that the tensile strength increased and the elongation decreased with the increase of annealing temperature.


2012 ◽  
Vol 622-623 ◽  
pp. 705-709 ◽  
Author(s):  
U. Mohammed Iqbal ◽  
V.S. Senthil Kumar

Severe plastic deformation is one of the emerging and promising techniques applied to bulk materials to produce fine grain structure with attractive properties. This study aims to investigate the effect of extrusion parameters like extrusion temperature, number of passes on the equal channel angular pressing and twist extrusion forming behavior of AA7075-T6 Aluminum alloy by hot extrusion process. AA7075-T6 samples of 70x28x18 mm cross sections extruded by equal channel angular pressing and twist extrusion process was subjected to microstructure analysis, hardness and tensile tests in order to determine their mechanical properties. As a result of the experiments, it was determined that twist extrusion leads to more grain refinement at high temperatures with more number of passes compared to equal channel angular pressing. SEM micrographs show that there is severe orientation of the grains facilitated by the extrusion process which enhances the strength. The dense banding of the grains had effected in marginal hardness enhancement in the matrix of the specimens processed by twist extrusion and equal channel angular extrusion process.


Sign in / Sign up

Export Citation Format

Share Document