Recrystallization of BCC Metals: Distribution of Strain Hardening and Texture Formation

2013 ◽  
Vol 753 ◽  
pp. 534-537 ◽  
Author(s):  
Yuriy Perlovich ◽  
Margarita Isaenkova ◽  
Olga Krymskaya

Data are presented on the x-ray line broadening distribution over the texture of cold-rolled Nb and Mo sheets. The method of generalized X-ray pole figures, which combine texture measurements with X-ray line profile analysis, is employed. The X-ray line broadening is considered as an indicator of residual deformation effects. It was revealed that these effects in cold-rolled BCC metals rise as the grain orientation shifts away from texture maxima towards texture minima. The intensity of X-ray reflections change during annealing at 200 – 500C and this change correlates with the line broadening. The recrystallization texture of BCC metals is dominated by orientations deflected from the peak maxima by 25 – 30 deg. These orientations in the deformed structure have relatively high stored energy. Their volume fraction is sufficient for them to be able to consume most of the deformed matrix.

2004 ◽  
Vol 443-444 ◽  
pp. 255-258 ◽  
Author(s):  
Yuriy Perlovich ◽  
Margarita Isaenkova

The distributions of substructure parameters for tubes of Zr-based alloys were constructed by use of the X-ray method of Generalized Pole Figures, combining X-ray line analysis and texture measurement. Obtained distributions cover α-Zr crystallites of all orientations and give the fullest description of substructure features of the studied tubes. The interconnection of different substructure parameters are analyzed.


2012 ◽  
Vol 27 (3) ◽  
pp. 194-199 ◽  
Author(s):  
A. Sarkar ◽  
Satyam Suwas ◽  
D. Goran ◽  
J.-J. Fundenberger ◽  
L.S. Toth ◽  
...  

The effectiveness of different routes of equal channel angular pressing (A, Bc, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route Bc deformed sample. The activation energy for recrystallization is lower for route Bc.


2018 ◽  
Vol 58 (6) ◽  
pp. 1181-1183 ◽  
Author(s):  
Setsuo Takaki ◽  
Takuro Masumura ◽  
Fulin Jiang ◽  
Toshihiro Tsuchiyama

1989 ◽  
Vol 22 (4) ◽  
pp. 299-307 ◽  
Author(s):  
R. Kužel ◽  
P. Klimanek

Procedures of X-ray diffraction line profile analysis for the evaluation of the dislocation content in plastically deformed hexagonal materials were tested by means of conventional powder diffractometry on polycrystalline zirconium deformed under tension at 77 K. In order to obtain a representative picture of the dislocation-induced X-ray line broadening a series of reflections was measured. The integral breadths and the Fourier coefficients were evaluated by both direct profile-shape analysis and profile fitting with analytical functions. The results show a significant anisotropy of the line broadening. The 0001 reflections are clearly less broadened than most of the others. According to the theoretical calculations presented previously such a phenomenon can be expected if the plastic deformation favours generation of dislocations with Burgers vectors a/3 〈2{\bar 1} {\bar 1}0〉.


2009 ◽  
Vol 42 (4) ◽  
pp. 580-591 ◽  
Author(s):  
Levente Balogh ◽  
Géza Tichy ◽  
Tamás Ungár

A systematic procedure is developed to evaluate the frequency of {10.1}〈10.\overline 2〉 and {11.2}〈11.\overline 3〉 compressive twins and {10.2}〈10.\overline 1〉 and {11.1}〈\overline 1\overline 1.6〉 tensile twins together with dislocation densities, active slip systems and crystallite size in hexagonal close packed (hcp) metals. The effect of pyramidal twinning on X-ray line broadening in hcp metals is fundamentally different from the effect of twinning on close packed planes in face centred cubic (fcc) crystals. Therefore, the usual theoretical descriptions developed previously for fcc crystals cannot be used for pyramidal twinning in hcp crystals. The profile functions of sub-reflections for this type of twinning are derived to be the sum of a symmetrical and an antisymmetrical Lorentzian function. Sub-profile properties are parameterized and the parameter files are incorporated into the convolutional multiple whole profile (CMWP) procedure. The extended procedure,eCMWP, is applied to determine pyramidal twin frequencies together with dislocation densities, active slip systems and crystallite size in Mg deformed at different temperatures, in commercial purity Ti deformed at high temperature and in high-purity Ti deformed at room temperature.


1968 ◽  
Vol 12 ◽  
pp. 208-235 ◽  
Author(s):  
R. L. Rothman ◽  
J. B. Cohen

AbstractA method of Fourier analysis of x-ray line broadening is presented whereby microstrain, incoherent particle size, and fault probability can be calculated using only first-order peaks. This method can thus be used in studies of catalysts, vapor- and electrodeposits or heavily textured specimens for which second-order peaks are too broad or weak, in cases where the effect of particle size is not the same for all orders of a peak, or for multiphase specimens where overlap of peaks sometimes occurs. Examples of deformed FCG and BCC metals and alloys are presented, with comparisons to the method of multiple orders.One part of the procedure, first demonstrated by Pines and Sirenko, provides for reducing the effects of truncation on the Fourier coefficients. As a result, larger particle sizes can be analyzed and the integrated intensity can be determined more precisely. Application to determinations of volume fraction are given.


Author(s):  
Jenõ Gubicza ◽  
Tamás Ungár

X-ray line profile analysis is a powerful alternative tool for determining dislocation densities, dislocation type, crystallite and subgrain size and size-distributions, and planar defects, especially the frequency of twin boundaries and stacking faults. The method is especially useful in the case of submicron grain size or nanocrystalline materials, where X-ray line broadening is a well pronounced effect, and the observation of defects with very large density is often not easy by transmission electron microscopy. The fundamentals of X-ray line broadening are summarized in terms of the different qualitative breadth methods, and the more sophisticated and more quantitative whole pattern fitting procedures. The efficiency and practical use of X-ray line profile analysis is shown by discussing its applications to metallic, ceramic, diamond-like and polymer nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document