Top-Seeded Solution Growth of 3 Inch Diameter 4H-SiC Bulk Crystal Using Metal Solvents

2014 ◽  
Vol 778-780 ◽  
pp. 79-82 ◽  
Author(s):  
Kazuhiko Kusunoki ◽  
Kazuhito Kamei ◽  
Nobuhiro Okada ◽  
Koji Moriguchi ◽  
Hiroshi Kaido ◽  
...  

We performed top-seeded solution growth of 4H-SiC for obtaining longer length crystal. Si-Cr and Si-Ti melts were used as solvents. Meniscus formation technique was applied to the present study. Special attention was paid to improve the process stability during long-term growth. One of major technological problems in the solution growth is that the precipitation of polycrystalline SiC which hiders the stable single crystal growth. Another problem is the fluctuation of supersaturation at the growth interface during the growth. Through the optimization of growth process conditions, we have successfully grown 4H-SiC single crystals up to 14 mm long with three-inch-diameter, and evaluated their crystalline quality.

2012 ◽  
Vol 717-720 ◽  
pp. 61-64 ◽  
Author(s):  
Hironori Daikoku ◽  
M. Kado ◽  
H. Sakamoto ◽  
Hiroshi Suzuki ◽  
T. Bessho ◽  
...  

We have grown high-quality long cylindrical (12 mm thick) 4H-SiC bulk crystals by the meniscus formation technique, which was first applied for the solution growth of bulk SiC. It enabled long-term growth by suppressing parasitic reactions such as polycrystal precipitation around the seed crystal. In addition, we could control the growth angle from −22° to 61° by adjusting the meniscus height. The thickness of the grown cylindrical crystals was 12 mm, which is the largest reported until now, and corresponded to a growth rate of 0.6 mm/h. Smooth morphology growth was maintained on the (000-1) C-face. In cross-sectional transmission optical microscopy images, few solvent inclusions and voids were observed. XRD measurements revealed that the FWHM values of the grown crystals were almost the same as those of the seed crystal.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 653 ◽  
Author(s):  
Botao Liu ◽  
Yue Yu ◽  
Xia Tang ◽  
Bing Gao

The growth interface instability of large-size SiC growth in top-seeded solution growth (TSSG) is a bottleneck for industrial production. The authors have previously simulated the growth of 4-inch SiC crystals and found that the interface instability in TSSG was greatly affected by the flow field. According to our simulation of the flow field, we proposed a new stepped structure that greatly improved the interface stability of large-size crystal growth. This stepped structure provides a good reference for the growth of large-sized SiC crystals by TSSG in the future.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3272
Author(s):  
Ellefsen ◽  
Arzig ◽  
Steiner ◽  
Wellmann ◽  
Runde

We have studied the influence of different SiC powder size distributions and the sublimation behavior during physical vapor transport growth of SiC in a 75 mm and 100 mm crystal processing configuration. The evolution of the source material as well as of the crystal growth interface was carried out using in situ 3D X-ray computed tomography (75 mm crystals) and in situ 2D X-ray visualization (100 mm crystals). Beside the SiC powder size distribution, the source materials differed in the maximum packaging density and thermal properties. In this latter case of the highest packaging density, the in situ X-ray studies revealed an improved growth interface stability that enabled a much longer crystal growth process. During process time, the sublimation-recrystallization behavior showed a much smoother morphology change and slower materials consumption, as well as a much more stable shape of the growth interface than in the cases of the less dense SiC source. By adapting the size distribution of the SiC source material we achieved to significantly enhance stable growth conditions.


1996 ◽  
Vol 11 (2) ◽  
pp. 288-295 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
Y. Shiohara

A series of numerical calculations of convection were performed for the YBa2Cu3O7−x (Y123) single crystal growth by the modified pulling method (Solute Rich Liquid Crystal Pulling method; SRL-CP method). The finite-difference method was used to calculate the steady state of the axisymmetric two-dimensional incompressible viscous fluid system. The effect of the crystal rotation on the flow pattern and the temperature distribution in the melt was studied. An increase of the crystal diameter and/or the crystal rotation rate increased the strength of the forced convection in the melt, and as a result, the temperature at the crystal growth interface increased. These results were consistent with the experimental results.


2016 ◽  
Vol 40 (6) ◽  
pp. 4870-4873 ◽  
Author(s):  
Shu Guo ◽  
Lijuan Liu ◽  
Mingjun Xia ◽  
Xiaoyang Wang ◽  
Lei Bai ◽  
...  

A new acentric borate La2Al4.68B8O22 crystal, grown using the top seeded solution growth method, shows a short absorption edge at 193 nm.


Sign in / Sign up

Export Citation Format

Share Document