Synthesis, Surface Acidity and Photocatalytic Activity of WO3/TiO2 Nanocomposites – An Overview

2014 ◽  
Vol 781 ◽  
pp. 63-78 ◽  
Author(s):  
S. Prabhu ◽  
A. Nithya ◽  
S. Chandra Mohan ◽  
Kandasamy Jothivenkatachalam

Titania has been studied to be one of the best photocatalysts for the decomposition of many organic pollutants present in aqueous medium. Because of the wide band gap energy of TiO2 (3.2 eV) it can be activated only under UV light region which is present 4 % in the solar light spectrum. The photocatalytic activity of TiO2 was enhanced by means of several methods. TiO2 coupled with other semiconductor has gained additional importance, owing to improving the efficient charge separation by trapping the photogenerated electrons. WO3 is a better semiconductor having relatively lower band gap energy (2.8 eV) and absorb broad solar light spectrum. The formation of WOx monolayer on TiO2 notably increases the surface acidity of TiO2. This increasing the surface acidity of WO3/TiO2 photocatalyst facilitates the adsorption of the more hydroxyl group in addition to more organic reactants on its surface which obviously facilitate the enhancement of photocatalytic activity. In this review, the synthesis methods and photocatalytic activity of some selected and unique results related to WO3/TiO2 photocatalyst were discussed. The efficient charge separation, increased absorption of the reactants by increasing the surface acidity and high aspect ratio structures of WO3/TiO2 are also reviewed.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3427
Author(s):  
Is Fatimah ◽  
Gani Purwiandono ◽  
Putwi Widya Citradewi ◽  
Suresh Sagadevan ◽  
Won-Chun Oh ◽  
...  

In this work, photoactive nanocomposites of ZnO/SiO2 porous heterostructures (PCHs) were prepared from montmorillonite clay. The effects of preparation methods and Zn content on the physicochemical features and photocatalytic properties were investigated. Briefly, a comparison of the use of hydrothermal and microwave-assisted methods was done. The Zn content was varied between 5 and 15 wt% and the characteristics of the nanomaterials were also examined. The physical and chemical properties of the materials were characterized using X-ray diffraction, diffuse-reflectance UV-Vis, X-ray photoelectron spectroscopy, and gas sorption analyses. The morphology of the synthesized materials was characterized through scanning electron microscopy and transmission electron microscopy. The photocatalytic performance of the prepared materials was quantified through the photocatalytic degradation of methyl violet (MV) under irradiation with UV and visible light. It was found that PCHs exhibit greatly improved physicochemical characteristics as photocatalysts, resulting in boosting photocatalytic activity for the degradation of MV. It was found that varied synthesis methods and Zn content strongly affected the specific surface area, pore distribution, and band gap energy of PCHs. In addition, the band gap energy was found to govern the photoactivity. Additionally, the surface parameters of the PCHs were found to contribute to the degradation mechanism. It was found that the prepared PCHs demonstrated excellent photocatalytic activity and reusability, as seen in the high degradation efficiency attained at high concentrations. No significant changes in activity were seen until five cycles of photodegradation were done.


2020 ◽  
Vol 20 (6) ◽  
pp. 1392
Author(s):  
Leny Yuliati ◽  
Mohd Hayrie Mohd Hatta ◽  
Siew Ling Lee ◽  
Hendrik Oktendy Lintang

In this work, the crystalline carbon nitride photocatalysts were synthesized by an ionothermal technique with varied synthesis temperature of 500, 550, and 600 °C, and synthesis time of 2, 4, and 6 h. Fourier transform infrared spectra showed the successful formation of the prepared carbon nitrides from their characteristic vibration peaks. X-ray diffraction patterns suggested that the same phase of poly(triazine imide) and heptazine could be observed, but with different crystallinity. The optical properties showed that different temperatures and synthesis time resulted in the different band gap energy (2.72–3.02 eV) as well as the specific surface area (24–73 m2 g–1). The transmission electron microscopy image revealed that the crystalline carbon nitride has a near-hexagonal prismatic crystallite size of about 50 nm. Analysis by high-performance liquid chromatography showed that the best photocatalytic activity for phenol degradation under solar light simulator was obtained on the crystalline carbon nitride prepared at the 550 °C for 4 h, which would be due to the high crystallinity, suitable low band gap energy (2.82 eV), and large specific surface area (73 m2 g–1). Controlling both the temperature and synthesis time is shown to be important to obtain the best physicochemical properties leading to high activity.


2015 ◽  
Vol 1123 ◽  
pp. 233-236 ◽  
Author(s):  
Handika Dany Rahmayanti ◽  
Sulhadi ◽  
Mahardika Prasetya Aji

Carbon Dots (C-Dots) was successfully prepared by simple heating method. The effect of additional elemental sulfur on the luminiscent performance of C-Dots was investigated. The preparation, chemical composition and optical properties such as absorbance and band gap energy are studied. The C-Dots were prepared with various mass sulfur 0.5-3.0 g and citric acid-urea was constant, i.e. 1.0 g and 4.0 g, respectively. This study used sulfur from natural deposit in Indonesia. The raw materials were prepared by mixing in pure water. The homogeneous solutions were heated at 225°C for 15 minutes under atmospheric pressure. The color emission of C-Dots is found in the visible light spectrum. The addition of sulfur in C-Dots phosphor caused the shifting of absorbance wavelength, i.e. 350-429 nm. By increasing mass of sulfur, the band gap energy of C-Dots decreased from 2.4 eV to 1.8 eV.


2010 ◽  
Vol 113-116 ◽  
pp. 2141-2144
Author(s):  
Si Yao Guo ◽  
Bo Chi ◽  
Jin Bing Sun ◽  
Feng Lu Wang ◽  
Lin Yang ◽  
...  

P-, N-doped titania were synthesized by the direct hydrothermal method, which phosphorus from phosphoric acid and the following nitridation from urea solution. The resulting materials were characterized by XRD, XPS analysis, and their photocatalytic activities were tested by the solar light irradiation. N-doping titania resulted in the band-gap narrowing with improved photocatalytic activity. However, the phosphated titania exhibited higher photocatalytic activity than the N-doped one, but with larger band-gap energy.


2014 ◽  
Vol 925 ◽  
pp. 200-204
Author(s):  
Leny Yuliati ◽  
Melody Kimi ◽  
Mustaffa Shamsuddin

Zinc sulfide (ZnS) has been reported to act as a photocatalyts to reduce water to hydrogen. However, ZnS could not work under visible light irradiation due to its large band gap energy. In order to improve the performance of ZnS, Ga and Sn were doped to ZnS. The series of Ga (0.1),Sn (x)-ZnS with various amounts of Sn (x) was prepared by hydrothermal method. XRD patterns suggested that the addition of Ga might reduce the crystallinity of ZnS, suggesting that Ga might inhibit the crystal growth or agglomeration of ZnS. On the other hand addition of Sn did not much affect the structure of the Ga (0.1)-ZnS. The DR UU-visible spectra confirmed the red shift of the absorption edge with the addition of Ga due to the reduced band gap energy, while the addition of Sn did not much shift the absorption edge of the Ga (0.1)-ZnS to longer wavelength. FESEM images showed that all the prepared samples have sphere-shaped particles and no remarkable change was observed with the addition of Ga or Sn. The photocatalytic hydrogen production from water was carried out at room temperature in the presence of sacrificial agent under visible light irradiation. While ZnS did not show activity under visible light, all the prepared Ga (0.1)-ZnS and Ga (0.1),Sn (x)-ZnS samples exhibited photocatalytic activity for hydrogen production. The highest hydrogen production was achieved on Ga (0.1),Sn (0.01)-ZnS, which activity was ca. three times higher than that of the single doped Ga (0.1)-ZnS. This study clearly showed that Sn acted as a good co-dopant to increase the photocatalytic activity of Ga (0.1)-ZnS for hydrogen production from water under visible light irradiation.


2019 ◽  
Vol 9 (5) ◽  
pp. 4199-4204 ◽  
Author(s):  
Oeindrila Mukhopadhyay ◽  
Soumita Dhole ◽  
Badal Kumar Mandal ◽  
Fazlur-Rahman Nawaz Khan ◽  
Yong-Chien Ling

Nanomaterials with many improved properties have been used in versatile applications. Herein we have synthesized SnO2 NPs doped with transition metal ions such as Zn2+, Mn2+ and Co2+ through a facile and inexpensive hydrothermal approach. The synthesized nanomaterials were characterized by XRD, FT-IR, SEM and UV-Vis analysis. The optical properties of the NPs were characterized by using UV–vis and photoluminescence spectroscopy (PLS). Their photocatalytic performances were investigated by degrading methylene blue (MB) dye with UV irradiation. Transition metal doping to SnO2 NPs improved the photocatalytic activity to degradation of methylene blue dye due to tuning of band gap energy i.e. lowering of band gap energy compared to undoped SnO2 NPs. The results suggest that the synthesized NPs could be used efficiently for remediation/degradation of environmentally hazardous dyes from waste water or environmental cleanup.


2016 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Siti Zulaikha Suhaili ◽  
Muhamad Kamil Yaakob ◽  
Siti Irma Yuana Saaid ◽  
Umi Sarah Jais

Pure TiO2 and Cr doped TiO2 (0.1-1.0wt% Cr) nanoparticles were synthesized via sol gel method. This study focuses on narrowing the TiO2 band gap energies in order to enhance the photocatalytic efficiency under visible light. The synthesized samples were characterized by X-Ray diffraction method (XRD), field emmision (FESEM) and also UV-Vis diffuse reflectance spectroscopy (DRS).The photocatalytic activity under sunlight irradiation was demonstrated by photocatalytic decomposition of methylene blue in water using UV/Vis spectrophotometer. The XRD analysis of pure TiO2 and doped TiO2 calcined at 500oC showed a mixture of anatase and rutile phases with decreasing crystallites size from 13.3nm to 11.6nm as the concentration of Cr was increased. The anatase-rutile phase transformation increased from 28.8% to 57.4%. An indication shows that at 0.75wt%, Cr the anatase and rutile phases have equal composition percentage. This study demonstrated that band gap energy of TiO2 was reduced with Cr doping which could enhance the photocatalytic efficiency. Sample containing 1.0wt% exhibit the lowest optical band gap energy at 2.86 eV. The optimum chromium doping concentration was found to be at 0.1 wt% Cr corresponding to band gap energy of 2.87 eV and degradation rate of 84%. 


2016 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Siti Zulaikha Suhaili ◽  
Muhamad Kamil Yaakob ◽  
Siti Irma Yuana Sheikh Mohd Saaid ◽  
Umi Sarah Jais

Pure TiO2 and Cr doped TiO2 (0.1-1.0wt% Cr) nanoparticles were synthesized via sol gel method. This study focuses on narrowing the TiO2 band gap energies in order to enhance the photocatalytic efficiency under visible light. The synthesized samples were characterized by X-Ray diffraction method (XRD), field emmision (FESEM) and also UV-Vis diffuse reflectance spectroscopy (DRS).The photocatalytic activity under sunlight irradiation was demonstrated by photocatalytic decomposition of methylene blue in water using UV/Vis spectrophotometer. The XRD analysis of pure TiO2 and doped TiO2 calcined at 500oC showed a mixture of anatase and rutile phases with decreasing crystallites size from 13.3nm to 11.6nm as the concentration of Cr was increased. The anatase-rutile phase transformation increased from 28.8% to 57.4%. An indication shows that at 0.75wt%, Cr the anatase and rutile phases have equal composition percentage. This study demonstrated that band gap energy of TiO2 was reduced with Cr doping which could enhance the photocatalytic efficiency. Sample containing 1.0wt% exhibit the lowest optical band gap energy at 2.86 eV. The optimum chromium doping concentration was found to be at 0.1 wt% Cr corresponding to band gap energy of 2.87 eV and degradation rate of 84%.


Sign in / Sign up

Export Citation Format

Share Document