Measuring Threshold Pressure of Melt Magnesium Infiltrating into Al2O3sf Porous Preform with Fast Method

2014 ◽  
Vol 783-786 ◽  
pp. 1609-1614 ◽  
Author(s):  
Ji Ming Zhou ◽  
Xue Hua Gu ◽  
Fang Yang ◽  
Le Hua Qi

Threshold pressure is a very important parameter for melt alloy successfully infiltrating into the porous preform. However, the precise measurement for threshold pressure is very difficult for the reason that infiltration process is undertaken very fast under extreme elevated temperature and high pressure without effective measuring devices to monitor it. A totally new measuring device was proposed and fabricated, which can be used to monitor the infiltration process “visually” and measure the threshold pressure directly at the same time. The infiltration speed can be controlled by adjusting the gas flow speed. The infiltration behavior of melt AZ91D alloy in Al2O3sf preform was researched at temperature of 800°C and pressure of 0.6 MPa. The optimized gas velocity was controlled at 25L/min. The degree of vacuum of the infiltration cavity was set 30kPa in experiments. The volume fraction of Al2O3sf was 10%. Under these conditions, the threshold pressure of melt AZ91D alloy into porous Al2O3sf preform was found to be related with vacuum degree in infiltration chamber, and it was about 30 kPa

Optik ◽  
2020 ◽  
pp. 166118
Author(s):  
Zhen Li ◽  
Jiqiang Wang ◽  
Xiaoxing Zhong ◽  
Tongyu Liu ◽  
Yanong Ning ◽  
...  

Author(s):  
Надежда Петровна Скибина

Проведено численное исследование нестационарного турбулентного сверхзвукового течения в камере сгорания прямоточного воздушно-реактивного двигателя. Описана методика экспериментального измерения температуры на стенке осесимметричного канала в камере сгорания двигателя. Математическое моделирование обтекания исследуемой модели двигателя проводилось для скоростей набегающего потока M = 5 ... 7. Начальные и граничные условия задачи соответствовали реальному аэродинамическому эксперименту. Проанализированы результаты численного расчета. Рассмотрено изменение распределения температуры вдоль стенки канала с течением времени. Проведена оценка согласованности полученных экспериментальных данных с результатами математического моделирования. Purpose. The aim of this study is a numerical simulation of unsteady supersonic gas flow in a working path of ramjet engine under conditions identical to aerodynamic tests. Free stream velocity corresponding to Mach numbers M=5 ... 7 are considered. Methodology. Presented study addresses the methods of physical and numerical simulation. The probing device for thermometric that allows to recording the temperature values along the wall of internal duct was proposed. To describe the motion of a viscous heat-conducting gas the unsteady Reynolds averaged Navier - Stokes equations are considered. The flow turbulence is accounted by the modified SST model. The problem was solved in ANSYS Fluent using finite-volume method. The initial and boundary conditions for unsteady calculation are set according to conditions of real aerodynamic tests. The coupled heat transfer for supersonic flow and elements of ramjet engine model are realized by setting of thermophysical properties of materials. The reliability testing of numerical simulation has been made to compare the results of calculations and the data of thermometric experimental tests. Findings. Numerical simulation of aerodynamic tests for ramjet engine was carried out. The agreement between the results of numerical calculations and experimental measurements for the velocity in the channel under consideration was obtained; the error was shown to be 2%. The temperature values were obtained in the area of contact of the supersonic flow with the surface of the measuring device for the external incident flow velocities for Mach numbers M = 5 ... 7. The process of heating the material in the channel that simulated the section of the engine combustion chamber was analyzed. The temperature distribution was studied depending on the position of the material layer under consideration relative to the contact zone with the flow. Value. In the course of the work, the fields of flow around the model of a ramjet engine were obtained, including the region of supersonic flow in the inner part of axisymmetric channel. The analysis of the temperature fields showed that to improve the quality of the results, it is necessary to take into account the depth of the calorimetric sensor. The obtained results will be used to estimate the time of interaction of the supersonic flow with the fuel surface required to reach the combustion temperature.


1960 ◽  
pp. 282-288 ◽  
Author(s):  
J. R. Purcell ◽  
A. F. Schmidt ◽  
R. B. Jacobs

Author(s):  
David C. Deisenroth ◽  
Jorge Neira ◽  
Jordan Weaver ◽  
Ho Yeung

Abstract In laser powder bed fusion metal additive manufacturing, insufficient shield gas flow allows accumulation of condensate and ejecta above the build plane and in the beam path. These process byproducts are associated with beam obstruction, attenuation, and thermal lensing, which then lead to lack of fusion and other defects. Furthermore, lack of gas flow can allow excessive amounts of ejecta to redeposit onto the build surface or powder bed, causing further part defects. The current investigation was a preliminary study on how gas flow velocity and direction affect laser delivery to a bare substrate of Nickel Alloy 625 (IN625) in the National Institute of Standards and Technology (NIST) Additive Manufacturing Metrology Testbed (AMMT). Melt tracks were formed under several gas flow speeds, gas flow directions, and energy densities. The tracks were then cross-sectioned and measured. The melt track aspect ratio and aspect ratio coefficient of variation (CV) were reported as a function of gas flow speed and direction. It was found that a mean gas flow velocity of 6.7 m/s from a nozzle 6.35 mm in diameter was sufficient to reduce meltpool aspect ratio CV to less than 15 %. Real-time inline hotspot area and its CV were evaluated as a process monitoring signature for identifying poor laser delivery due to inadequate gas flow. It was found that inline hotspot size could be used to distinguish between conduction mode and transition mode processes, but became diminishingly sensitive as applied laser energy density increased toward keyhole mode. Increased hotspot size CV (associated with inadequate gas flow) was associated with an increased meltpool aspect ratio CV. Finally, it was found that use of the inline hotspot CV showed a bias toward higher CV values when the laser was scanned nominally toward the gas flow, which indicates that this bias must be considered in order to use hotspot area CV as a process monitoring signature. This study concludes that gas flow speed and direction have important ramifications for both laser delivery and process monitoring.


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


JOM ◽  
2020 ◽  
Vol 72 (3) ◽  
pp. 1039-1051
Author(s):  
Haopeng Shen ◽  
Paul Rometsch ◽  
Xinhua Wu ◽  
Aijun Huang

SPE Journal ◽  
2006 ◽  
Vol 11 (02) ◽  
pp. 199-205 ◽  
Author(s):  
David I. Atkinson ◽  
Oyvind Reksten ◽  
Gerald Smith ◽  
Helge Moe

Summary Dedicated wet-gas flowmeters are now commercially available for the measurement of gas and liquid flow rates and offer a more compact measurement solution than does the traditional separator approach. The interpretation models of traditional multiphase flowmeters emphasize the liquid rate measurements and have been used to well test and meter mostly liquid-rich flow streams. These models were not developed for the measurement of gas flow rates, particularly those of wet gas. A new interpretation is described that allows a traditional multiphase flowmeter to operate in a dual mode either as a multiphase meter or as a wet-gas meter in 90 to 100% gas. The new interpretation model was developed for a commercially available multiphase flowmeter consisting of a venturi and a dual-energy composition meter. This combination results in excellent predictions of the gas flow rate; the liquid rate prediction is made with acceptable accuracy and no additional measurements. The wet gas and low-liquid-volume-fraction interpretation model is described together with the multiphase flowmeter. Examples of applying this model to data collected on flow loops are presented, with comparison to reference flow rates. The data from the Sintef and NEL flow loops show an error (including the reference meter error) in the gas flow rate, better than ± 2% reading (95% confidence interval), at line conditions; the absolute error (including the reference meter error) in the measured total liquid flow rate at line conditions was better than ± 2 m3/h (< ± 300 B/D: 95% confidence interval). This new interpretation model offers a significant advance in the metering of wet-gas multiphase flows and yields the possibility of high accuracies to meet the needs of gas-well testing and production allocation applications without the use of separators. Introduction There has been considerable focus in recent years on the development of new flow-measurement techniques for application to surface well testing and flow-measurement allocation in multiphase conditions without separating the phases. This has resulted in new technology from the industry for both gas and oil production. Today, there are wet-gas flowmeters, dedicated to the metering of wet-gas flows, and multiphase meters, for the metering of multiphase liquid flows. The common approach to wet-gas measurement relates gas and liquid flows to a "pseudo-gas flow rate" calculated from the standard single-phase equations. This addresses the need for gas measurement in the presence of liquids and can be applied to a limit of liquid flow [or gas volume fraction, (GVF)], though the accuracy of this approach decreases with decreasing GVF. The accurate determination of liquid rates by wet-gas meters is restricted in range. The application and performance of multiphase meters has been well documented through technical papers and industry forums, and after several years of development is maturing (Scheers 2004). Some multiphase measurement techniques can perform better, and the meters provide a more compact solution, than the traditional separation approach. It is not surprising that the use of multiphase flowmeters has grown significantly, the worldwide number doubling in little over a 2-year period (Mehdizadeh et al. 2002). Multiphase-flowmeter interpretation emphasizes the liquid rate measurement, and the application of multiphase flowmeters has been predominantly for liquid-rich flow stream allocation and well testing.


Sign in / Sign up

Export Citation Format

Share Document