Effect of Relative Motion between Weld Tool and Work Piece on Microstructure of Ultrasonically Welded Joint

2014 ◽  
Vol 783-786 ◽  
pp. 1782-1787 ◽  
Author(s):  
Tomohiro Sasaki ◽  
Yusuke Hosokawa

Ultrasonic welding is conducted using pure aluminum sheets to investigate effect of the transitional welding processes comprised of three transitional stages on the formation of the weld microstructure. In the first stage of ultrasonic welding, the relative motion mainly occurred between the workpieces, and a partially bonded region was observed in the weld interface. In the second stage, the relative motion at the weld interface was suppressed by the formation of the partially bonded region, while relative motion between the weld tool and the workpiece in contact with the weld tool. The relative motion at the weld tool/workpiece caused weld temperature rise with a penetration the weld tool edge. In the third stage, a plastic deformation zone generated by the relative motion at the weld tool/workpiece spread into the lower side of weld part as the welding time increased. It is proposed that the formation of weld microstructure in ultrasonic welding is attributed to the thermo-mechanically effect of the relative motion of the weld tool and workpiece.

2019 ◽  
Vol 9 (19) ◽  
pp. 4188 ◽  
Author(s):  
Jisun Kim ◽  
Jaewoong Kim ◽  
In-ju Kim ◽  
Sungwook Kang ◽  
Kwangsan Chun

This study analyzed the characteristics of aluminum and copper sheets under multi-layer ultrasonic welding, and observed the strength, fracture type, and interface of the weld zone according to location. In addition, an experimental plan was developed using the Taguchi method to optimize the quadruple lap ultrasonic welding process conditions of 0.4t aluminum and copper sheets, and the experiment was performed for each of 25 welding condition. For strength evaluation, the ultrasonic welding performance was evaluated by measuring the tensile strength as a composite material and the shear force at the weld interface through two types of tensile tests: simultaneous tensile and individual tensile. To identify the individual shear strengths of the multi-layer dissimilar ultrasonic welds, three types of tensile tests were performed for each specimen depending on the location of the welded, and as the distance from the horn increased, each of shear strength decreased while the difference in strength value increased. For quadruple lap welding of pure aluminum and copper sheets, the S/N (Signal to Noise Ratio) was the highest at 64.48 with a coarse-grain pattern and optimal welding conditions, and this was selected as the optimal condition. To evaluate the optimized welding condition, additional tests were conducted using the welding conditions that showed the maximum strength values and the welding conditions optimized using the Taguchi method through simple tests. A strength evaluation of the optimized weldment was performed, and for a simultaneous tensile test, it was found that the strength of the optimized weldment was improved by 45% compared to other cases.


Author(s):  
Renangi Sandeep ◽  
Arivazhagan Natarajan

In the twenty-first century, the application of carbon fiber reinforced polymer (CFRP) materials in the vehicle industry are growing rapidly due to lightweight, high specific strength, and elasticity. In the automobile and aerospace industries, CFRP needs to be joined with metals to build complete structures. The demand for hybrid structures has prompted research into the combination of CFRP and metals in manufacturing. Aluminium and CFRP structures combine the mechanical properties of aluminium with the superior physical and chemical properties of CFRP. However, joining dissimilar materials is often challenging to achieve. Various joining technologies are developed to produce hybrid joints of CFRP, and aluminium alloys include conventional adhesives, mechanical and thermal joining technologies. In this review article, an extensive review was carried out on the thermal joining technologies include laser welding, friction-based welding technologies, ultrasonic welding, and induction welding processes. The article primarily focused on the current knowledge and process development of these technologies in fabricating dissimilar aluminium and CFRP structures. Besides, according to Industry 4.0 requirements, additive manufacturing-based techniques to fabricate hybrid structures are presented. Finally, this article also addressed the various improvements for the future development of these joining technologies. Ultrasonic welding yields the maximum shear strength among the various hybrid joining technologies due to lower heat input. On the other hand, laser welding produces higher heat input, which deteriorates the mechanical performance of the hybrid joints. Surface pretreatments on material surfaces prior to joining showed a significant effect on joint shear strength. Surface modification using anodizing is considered an optimal method to improve wettability, increasing mechanical interlocking phenomena.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


2020 ◽  
Vol 856 ◽  
pp. 175-181
Author(s):  
Parinya Kumma ◽  
Panuwat Soranansri

A lightweight structure has been often mentioned in the automotive industry due to the increasing cost of energy as well as environmental legislation. Multi-material design is applied to reduce the weight of a car body. To join dissimilar sheet materials, it is quite difficult to achieve by welding processes. A flat-clinching process is one of the mechanical joining processes, which have join-ability of dissimilar sheet materials by plastic deformation. The purpose of this paper was to study the clinch-ability to join AA1100-to-AA1100 aluminum, AISI1010-to-AISI1010 steel, and AISI1010 steel-to-AA1100 aluminum sheets. Furthermore, the effect of both blank holder force (BHF) and edge radius (BHR) in the flat-clinching process on a joining strength was investigated. A shear strength test was conducted to examine the joining strength. The results show that the flat-clinching process can be successfully applied to join the similar sheet materials with the formation of interlocking. However, to achieve the joint of the dissimilar sheet materials, the AISI1010 steel sheet must be on the punch side. Also, both the BHF and the BHR significantly influent on the joining strength.


Author(s):  
S. S. SATHEESH KUMAR ◽  
I. BALASUNDAR ◽  
T. RAGHU

Constrained groove pressing (CGP) is an attractive severe plastic deformation technique capable of processing ultrafine grained/nanostructured sheet materials. The deformation behavior of pure aluminum during constrained groove pressing is investigated by carrying out a two-dimensional finite element analysis (FEA). FEA predicted deformation behavior observed during each stages of pressing indicated almost negligible deformation in flat regions, whereas the inclined shear regions revealed diverse deformation characteristics. The plastic strain distributions unveiled inhomogeneous strain distribution at the end of one pass. Detailed examination of plastic strain evolution during CGP along various sections divulged superior strain distribution along middle surfaces when compared to top and bottom surfaces. The degree of strain homogeneity is evaluated quantitatively along different regions of the sheet and is correlated to the deformation characteristics. Load–stroke characteristics obtained during corrugating and flattening of sheets exhibited three stages and two stages behavior, respectively. The results obtained from the analysis are experimentally validated by processing pure aluminum sheets by CGP and the measured deformation homogeneity is benchmarked with FEA results.


Author(s):  
Xudong Cheng ◽  
Patrick Schwieso ◽  
Hongseok Choi ◽  
Arindom Datta ◽  
Xiaochun Li

This work is to study micro thin film sensor embedding in metals for the production of miniature smart tooling. This technique promises to significantly improve the safety and reliability for manufacturing processes and reduce operation costs. One key concern of the current research is to investigate if sensor functionality can be maintained during and after embedding in metals by use of ultrasonic welding (USW), which could be hostile to micro thin film thermocouples (TFTCs) embedded near the welding interface. The welding workpieces, consisting of a nickel strip with embedded micro sensors and a copper thin sheet, were welded by USW process. Experimental results showed that TFTCs survived the ultrasonic welding process. The embedded TCFCs were also capable of measuring temperature in-situ near the weld interface during the embedding process.


Author(s):  
Yuquan Meng ◽  
Dingyu Peng ◽  
Qasim Nazir ◽  
Gowtham Kuntumalla ◽  
Manjunath C. Rajagopal ◽  
...  

Abstract Joining soft polymers and metals is receiving increasing attention in both industry and academia to enable the manufacturing of innovative products. One motivation arises from the production of next-generation heat exchanges, the structure of which is primarily composed of polymers and metals. Waste heat coming from low temperature exhaust gas stream is significant in industries in the U.S. However, traditional heat exchangers that are available to recover heat in the presence of small temperature difference are large and costly, restricting the wide application of such heat exchangers. To address this challenge, a hybrid materials design is proposed to achieve a balance between thermal conductivity and mechanical strength. High quality requirement induced by the changing operating conditions necessitates a strong bonding between polymers and copper. In this research, the possibility of using ultrasonic welding, which is conventionally employed to join dissimilar or similar metal layers, is explored. Preliminary results from welding experiments and tensile shear tests reveal that two bonding modes exist in the welding of PET and copper. Furthermore, analysis of power signals collected during welding shows that one can potentially monitor and optimize welding processes using monitoring signals. It is concluded from this study that ultrasonic welding has excellent potential in joining soft polymers and metals. Future work is also discussed on the process improvement and mechanism investigation.


2013 ◽  
Vol 753 ◽  
pp. 257-262 ◽  
Author(s):  
Wei Min Mao ◽  
Ping Yang

The effects of net driving force for migration of high angle grain boundaries were emphasized beside many other factors which could influence the process of texture formation during recrystallization annealing of 95% cold rolled pure aluminum sheets. The net driving force consists basically of stored energy. However, it could be reduced by recovery, boundary drag, solute drag and Zener drag in different extents, in which only boundary drag is mis-orientation dependent. It was indicated that both oriented nucleation and oriented growth have obvious influence on recrystallization texture, and how far they influence the texture depends also on the level of net driving force when the grain growth starts during annealing. Oriented growth, which is induced by the differences in boundary drag of differently oriented grains, and the corresponding texture formation, could be observed easily when the recrystallization proceeds under relative higher solute drag and Zener drag in commercial purity aluminum. The oriented nucleation process prevails during recrystallization of sufficiently recovered high purity aluminum with very low solute drag and Zener drag, after which strong cube texture forms. In this case the oriented growth indicates limited effect. Both the oriented growth and oriented nucleation will fail if high purity deformation matrix without clear solute drag and Zener drag has not experienced an obvious recovery before recrystallization grain growth, since extremely high net driving force leads to very small critical nucleus size and multiplicity of growing grains, which results in randomization of recrystallization texture.


Author(s):  
A. Siddiq ◽  
E. Ghassemieh

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement.


Sign in / Sign up

Export Citation Format

Share Document