Cutting Performance of Diamond Coated, TiAlN Coated and Carbide Cutting Tools in High Speed Milling Graphite

2014 ◽  
Vol 800-801 ◽  
pp. 451-459
Author(s):  
Yu Hai Zhou ◽  
Cheng Yong Wang ◽  
Qi Ming Wang

This paper focusing on cutting performance high speed milling Electrical Discharging Machining (EDM) graphite with diamond coated、Carbide (WC) and TiAlN coated cutting Tools. tools wear, cutting force and machined surface had been researched. Experiment study including cutting speed, feed rate per tooth, radial depth of cut, axial depth of cut, and material of tools factors effects on the cutting forces. Cutting parameters are optimized based on the orthogonal experiment. Experiment in high speed milling with diamond coated tools all comparison with TiAlN coated and Carbide (WC) tools. On the surface quality, cutting forces and tool wear influence graphite cutting tool materials research, process parameters, tool design and optimization of processing parameters to provide supportive data. The minimum cutting force as the goal, through the orthogonal experiment for the optimization of cutting parameters obtained for the high speed milling graphite with diamond-coated tool: cutting force 360m/min,feed per tooth 0.15mm/z, radial depth of cut 0.9mm, axial depth of 9mm.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2011 ◽  
Vol 338 ◽  
pp. 709-713
Author(s):  
Zhen Hua Wang ◽  
Jun Tang Yuan

In this paper, 24full factorial design and homogeneous design were applied to the high-speed milling experiments for Mg-6Nd-4Gd-3Y magnesium alloy. According to the experimental results of cutting force, the effect of cutting parameters (cutting speed, feed per tooth, depth of cut, and width of cut) on cutting force was discussed, and the nonlinear polynomial regression models of cutting forces based on the cutting parameters were presented by the partial least-square regression.


2011 ◽  
Vol 189-193 ◽  
pp. 3084-3088
Author(s):  
De Wen Tang ◽  
Ru Shu Peng ◽  
Rui Lan Zhao

High speed milling hardened mould steel (above HRC50) at pocket corner generates the cutting forces increase and vibration gets fiercely because of the sudden change of cutting direction. It will cause serious wear and possible breakage of cutting tool, and poor quality of parts. Hence, the need to select reasonable cutting parameters and adopt appropriate cutting strategies will help them to achieve their goal. In this paper, the effects cutting parameters including cutting speed, pocket corner angle, feed rate per tooth and radial depth of cut on cutting force and vibration are studied. The results show that sharper pocket corner results in the increase of cutting force and makes vibration strong. Cutting force increase with the increase of cutting speeding, feed per tooth and radial depth of cut. The optimum of cutting speed leads to the decrease of vibration. It is proposed that cutting parameters should be optimized to improve tool life and processing efficiency.


2011 ◽  
Vol 308-310 ◽  
pp. 871-876 ◽  
Author(s):  
Ying Fei Ge ◽  
Jiu Hua Xu ◽  
Yu Can Fu

High speed milling tests were performed on the SiCp/2009Al composites to investigate the cutting forces by using PCD tools in the speed range of 600-1200m/min. The results showed that the peak value of the cutting force Fy (in the tool radial direction) was in the range of 700-1450N under the present cutting condition. The maximum amplitude of cutting force vibration in the tool radial direction can reach 700N. Cutting forces increased with increasing feed rate or radial depth of cut and decreased with increasing cutting speed. Negative rake angle and relatively large tool nose radius were recommended as far as cutting forces was concerned. Materials with higher volume fraction or smaller reinforcement particle size had the bigger cutting forces. T6 heat treatment can increase the cutting forces significantly but the using of coolant can decrease the cutting forces evidently.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2009 ◽  
Vol 69-70 ◽  
pp. 59-63 ◽  
Author(s):  
Cheng Yong Wang ◽  
De Weng Tang ◽  
Zhe Qin ◽  
Z.G. Chen ◽  
Ying Ning Hu ◽  
...  

When the pocket in die and mould is machined by high speed milling (HSM), the cutting forces increase and vibration fluctuates at the pocket corner because of the sudden change of cutting direction in general. It will cause serious wear and possible breakage of cutting tool, and poor quality of parts. By means of experiments, the cutting forces and vibration at the pocket corner with different HSM conditions are measured. The results show that the sharper pocket corner, higher cutting speeds, larger feed rate per tooth and radial depth of cut, will result in increasing of cutting forces and vibration amplitude. Thus, it will lead to be unstable during the process of high speed milling pocket corner.


2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


2016 ◽  
Vol 693 ◽  
pp. 856-862
Author(s):  
Shi Xiong Wu ◽  
Bin Li ◽  
Wei Ma

When milling corners in high speed, it will lead the mutation of cutting force that affects the processing quality and processing efficiency. In order to study the influence of milling parameters on milling force in the corner. Firstly, an orthogonal experimental of corner is designed to study the influence of various cutting parameters on cutting force. Axial cutting depth, radial depth, spindle speed and feed speed, as the major influence factors, impact on cutting force in corner milling. Then, a cutting force model of corner is established based on a method of orthogonal experiment linear regression. The significance test of regression equation and regression coefficient shows that cutting force model is accurate. The cutting force model is used to predict the cutting force, and then select the appropriate cutting parameters.


2009 ◽  
Vol 69-70 ◽  
pp. 403-407 ◽  
Author(s):  
Li Zhou ◽  
Cheng Yong Wang ◽  
Xiao Jun Wang ◽  
Zhe Qin

Cutting tools suffer severe abrasive friction and wear in high speed milling of graphite. Cutting forces were measured and analyzed using time-frequency analysis method to reveal the correlation between cutting force variations and tool wear evolution. The static and dynamic force components increased prominently with tool wear. The cutting force Fy was found the most sensitive to the tool wear evolution. The waveform of cutting force became periodic and irregular with the increase of tool wear. Good correlation was found between the first force harmonic and tool wear.


2011 ◽  
Vol 697-698 ◽  
pp. 49-52 ◽  
Author(s):  
Xiao Yong Yang ◽  
Cheng Zu Ren ◽  
Guang Chen ◽  
Bing Han ◽  
Y. Wang

This study focused on the side milling surface roughness of titanium alloy under various cooling strategies and cutting parameters. The experimental results show that the cooling strategies significantly affect the surface roughness in milling Ti-6Al-4V. Surface roughness (Ra) alterations are investigated. Cutting fluid strategy made nearly all the smallest and most stable roughness values. The surface roughness values produced by all cooling strategies are obviously affected by feed, radial depth-of-cut and cutting speed. However, axial depth-of-cut has little influence.


Sign in / Sign up

Export Citation Format

Share Document