Behaviour of AlMg3 Base Material and its Friction Stir Welded Joints under Cyclic Loading Conditions

2015 ◽  
Vol 812 ◽  
pp. 155-160
Author(s):  
János Lukács ◽  
Ákos Meilinger

The friction stir welding (FSW) is a dynamically developing version of the pressure welding processes. Nowadays, the knowing of the properties and the behaviour of the welded joints is an important direction of the investigations, especially under cyclic loading. The research work aimed (i) to demonstrate the behaviour of the FSW welded joints under cyclic loading conditions; (ii) to confirm the applicability of the used friction welding technology. Experiments were performed on 5754-H22 aluminium alloy and its welded joints; both high cycle fatigue (HCF) and fatigue crack propagation (FCG) tests were executed. HCF limit curves were determined based on staircase method. Statistical behaviour of the base material and the welded joints under FCG was represented by the cutting of the specimens, in other words by the using of different crack paths. FCG limit curves can be determined by own developed six step method. The investigations and their results were compared with each other and with the results can be found in the literature.

2014 ◽  
Vol 891-892 ◽  
pp. 1463-1468
Author(s):  
János Lukács ◽  
Ákos Meilinger

The friction stir welding (FSW) is a dynamically developing version of the pressure welding processes. Nowadays, the knowing of the properties and the behaviour of the welded joints is an important direction of the investigations, especially under cyclic loading. The research work aimed (i) to demonstrate the behaviour of the friction stir welded joints under cyclic loading conditions; (ii) to determine fatigue limit or design curves for aluminium alloys and their welded joints made by FSW process. Experiments were performed on 5754-H22 and 6082-T6 aluminium alloys and their welded joints. Both high cycle fatigue (HCF) and fatigue crack propagation (FCG) tests were executed on both base materials and their welded joints. Statistical behaviour of the base materials and welded joints was represented by the cutting of the specimens and the using of different crack paths. HCF limit curves were determined based on staircase method. FCG limit curves can be determined by own developed six step method. The investigations and their results were compared with each other and with the results can be found in the literature.


2014 ◽  
Vol 794-796 ◽  
pp. 371-376 ◽  
Author(s):  
Ákos Meilinger ◽  
János Lukács

The Friction Stir Welding (FSW) is a dynamically developing version of the pressure welding processes. High-quality welded joints can be created using this process for different engineering applications (e. g. automotive parts). Nowadays, the knowing of the properties and the behaviour of the welded joints is an important direction of the investigations, especially under cyclic loading. The research work aimed to demonstrate the behaviour of the friction stir welded joints under cyclic loading conditions. Fatigue Crack Propagation (FCG) experiments were performed on 5754-H22 and 6082-T6 aluminium alloys and their friction stir welded joints. The CT type specimens were cut parallel and perpendicular to the characteristic directions of the base materials and the welded joints, and the notch locations in the specimens of welded joints were different, too. Therefore, the propagating cracks represent the possible directions of the fatigue cracks both on the base materials and on the welded joints. The results of the fatigue crack propagation tests on the welded joints clearly demonstrate the different characteristics of the thermo-mechanically affected zone (TMAZ), the heat affected zone (HAZ), and the advancing (AS) and retreating sides (RS) of the weld nugget (WN). The investigations and their results were compared with each other and with the results can be found in the literature.


2017 ◽  
Vol 885 ◽  
pp. 86-91 ◽  
Author(s):  
János Lukács ◽  
Ákos Meilinger ◽  
Dóra Pósalaky

Our research work has focused from the materials world on the aluminium alloys, from the manufacturing processes on the welding technologies, and from different loads on the cyclic loads. The article aimed (i) to demonstrate the behaviour of the friction stir welded (FSW) joints under cyclic loading conditions; (ii) to determine fatigue (limit) curves for two aluminium alloys and their welded joints. Experiments were performed on 5754-H22 and 6082-T6 aluminium alloys and their FSW joints. Both high cycle fatigue (HCF) and fatigue crack propagation (FCG) tests were executed on both base materials and their welded joints. Statistical behaviour of the base materials and welded joints was represented by the cutting of the specimens and the using of different crack paths. HCF limit curves were determined based on staircase method and FCG limit curves can be determined by own developed six step method. The investigations and their results were compared with each other and with the results can be found in the literature.


2021 ◽  
Vol 71 (2) ◽  
pp. 299-304
Author(s):  
Srinivasa Rao Mallipudi ◽  
Tangudu Sai Shankar ◽  
Perumalla Srikar ◽  
Uppda Bhanoji Rao ◽  
Yandra Chandrasekhar ◽  
...  

Abstract In this study, friction stir welding (FSW) and Tungsten gas welding (TIG) processes were used to weld 5 mm thick Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy plates. The FSwelds and TIG welds were tested for mechanical properties (hardness, ultimate tensile strength, bending strength and impact strength) by means of vicker’s hardness machine, universal testing machine and impact test machine respectively. The strength of the base material was higher, compared to the strength of the FSW and TIG welded joints. The strength of the TIG welded joint decreased, compared to the strength of the FSW welded joint. The microstructure features were also observed for base material with the aid of metallurgical microscope and compared the same with the microstructures of FSW and TIG welded joints. FSW change the material strength due to fine-grain refinement in the stir zone in Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy and therefore FS welded joint exhibited 91.6% joint efficiency followed by the TIG welded joint of 69.8%.


2015 ◽  
Vol 812 ◽  
pp. 375-380 ◽  
Author(s):  
D. Pósalaky ◽  
János Lukács

The magnitude of different aluminium alloys, especially the ones with higher strength, are increasing in the structural engineering, not just the usual applications (like the aerospace industry) but more likely in the automotive industry. There are more assumptions of the effective use of aluminium; we should highlight two important factors, the technological and the applicability criterions. The technological criterion is the joining of structural elements, frequently with welding thus the technological criterion ultimately is the weldability. The assumption of applicability comes from the loading capability of these structures, which is typically cyclic loading so the key issue from the point of view of applicability is the resistance to fatigue. This article represents physical simulation and fatigue test results both on the base material and on the welded joints.


2009 ◽  
Vol 83-86 ◽  
pp. 1243-1250 ◽  
Author(s):  
R.L.L.P. Cerveira ◽  
G. F. Batalha

The aim is to analyze a junction produced by a Friction Stir Welding (FSW) joining process under multiaxial loading, employing a modified Arcan test that allows an angle variation of the loading in order to evaluate the failure of the FSW weldment as compared to the base material. A short review of the earlier studies and relevant theories about the FSW processes and fracture modes I and II under multiaxial loading are presented and were experimentally evaluated for an AA2024-T3 aluminum alloy sheets (t = 1.6 mm) processed by FSW. The results obtained can serve as a basis to compare the junctions made using FSW and conventional joint methods such as rivets (very common practice in the aeronautical industry).


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


2019 ◽  
Vol 969 ◽  
pp. 490-495
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C.H. Bharat Kumar ◽  
C. Sathiya Narayanan

An investigation has been made to improve the properties of the friction stir welded (FSW) 6061-T6 aluminum alloys. A cryogenic thermal treatment is developed for the joints during welding and its effects on mechanical and metallurgical properties, and precipitates are evaluated at various welding parameters. The friction stir welded joints with cryogenic treatment attained the better properties than the without cryogenic treatment. The improvement of properties was attributed to the refinement of grain size and to the introduction of a reduction in the softening region of the welded joints. Under cryogenic cooling rates, joints were experienced to the low temperature environments and faster cooling rates, which are contributed to enhance the hardness of the stir zone and heat affected zone regions and the formation of fine grain structure in the stir zone. The results indicated that the formation of finer grains of less than 5 µm in the stir zone, which is smaller than the joints of without cryogenic treatment. Subsequently, mechanical properties drastically improved and the joints achieved a maximum joint efficiency of 74% of the base material


2020 ◽  
pp. 35-46
Author(s):  
M.D. Panteleev ◽  
◽  
A.V. Sviridov ◽  
A.A. Skupov ◽  
N.S. Odintsov ◽  
...  

In this work, we investigated the technological features of promising technologies for laser welding and friction stir welding of high-strength aluminum-lithium alloy V-1469. The modes of laser welding and friction stir welding have been carried out. In this article, we showed the perspective welding methods provide high values of ductility and impact toughness, while the strength of welded joints is not less than 0,8 of the strength of the base material and values of low cycle fatigue is not less than 110•103 cycles. The results allows to propose laser welding and friction stir welding processes as an alternative to riveted joint for aluminum-lithium alloy V-1469 as applied to the elements of the fuselage.


Author(s):  
Jaishree Sanjeevi Maran ◽  
Pratyush Kumar Patro ◽  
Ilangovan Murugesan ◽  
Sai Krishna Sekar ◽  
Sidhaarth Bamarani Thangaswamy

Friction Stir processing, a novel welding process which weld similar and dissimilar metals and alloys in solid state for joining metallic alloys and it has replaced conventional welding processes and have become an alternative welding technique. The commonly used aluminum alloys AA6061 and AA5086 were joined together using FSW. In this study, two parameters such as weld speed and tool rotation speed are taken into account. By varying these parameters the dissimilar alloys were welded together. The welded joints were analyzed for its chemical composition and phases formed due to heat produced by friction. The composition is characterized by Electron Back Scattered Diffraction technique (EBSD) and X-ray Diffraction technique (XRD). The influence of tool rotation speed and weld speed on texture has been studied.


Sign in / Sign up

Export Citation Format

Share Document