The Effect of Casting Speed on Physical Fields of AZ80 Magnesium Alloy during DC Casting

2015 ◽  
Vol 816 ◽  
pp. 343-348
Author(s):  
Yuan Yuan Bai ◽  
Qi Chi Le ◽  
Hai Tao Zhang ◽  
Zhi Qiang Zhang ◽  
Lei Bao

A comprehensive two-dimensional (2D) mathematical model based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT was developed to describe the interaction of the multiple physics fields during DC casting process. ANSYS was for calculation of the stress field and FLUENT was for calculation of the fluid flow, heat transfer of the solidification. The results show that: the model is reliable and accurate to simulate the multiple physics of DC casting. Consequently, the position, which was prone to hot tearing, was confirmed and the max velocity, at which the hot cracking might not occur, was determined. The numerical simulations will be very useful for preventing crack, optimizing casting parameters and obtaining high-quality ingots.

2011 ◽  
Vol 690 ◽  
pp. 137-140 ◽  
Author(s):  
Yu Bo Zuo ◽  
Bo Jiang ◽  
Zhong Yun Fan

A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process has been developed for production of high quality ingots and billets of light alloys. In the MC-DC casting process, intensive melt shearing provided by a newly developed rotor-stator unit is used to control the solidification process during the DC casting with a conventional DC caster. Experimental results of DC casting of Al- and Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce light alloy billets with significantly refined microstructure and substantially reduced cast defects. The effect of intensive melt shearing on grain refinement has been mainly attributed to the enhanced heterogeneous nucleation on well dispersed oxides occurring naturally in the alloy melt.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6881
Author(s):  
Yongtao Xu ◽  
Zhifeng Zhang ◽  
Zhihua Gao ◽  
Yuelong Bai ◽  
Purui Zhao ◽  
...  

In this paper, the effect of adding the refiner Sc to the high Zn/Mg ratio 7xxx series aluminum alloy melt on the hot tearing performance, microstructure, and mechanical properties of the alloy is studied. The hot tearing performance test (CRC) method is used to evaluate the hot tearing performance of the alloy. The squeeze casting process was used to form solid cylindrical parts to analyze the structure and properties of the alloy. This study shows that the hot cracking sensitivity of the alloy after the addition of the refiner Sc is significantly reduced. The ingot grain size is significantly reduced, and the average grain size is reduced from about 86 μm to about 53 μm. While the mechanical properties are significantly improved, and the tensile strength reduced from 552 MPa is increased to 571 MPa, and the elongation rate is increased from 11% to 14%.


2014 ◽  
Vol 794-796 ◽  
pp. 149-154 ◽  
Author(s):  
Jayesh B. Patel ◽  
Hu Tian Li ◽  
Ming Xu Xia ◽  
Simon Jones ◽  
Sundaram Kumar ◽  
...  

A novel direct chill (DC) casting process, melt conditioned direct chill (MC-DC) casting process, has been developed for production of high quality aluminium alloy billets. In the MC-DC casting process, a high shear device is submerged in the sump of the DC mould to provide intensive melt shearing, which in turn, disperses potential nucleating particles, creates a macroscopic melt flow to uniformly distribute the dispersed particles, and maintains a uniform temperature and chemical composition throughout the melt in the sump. Experimental results have demonstrated that, the MC-DC casting process can produce aluminium alloy billets with significantly refined microstructure and reduced cast defects. In this paper, we give an overview of the MC-DC casting process and report on results obtained from an industrial scale trial.


2014 ◽  
Vol 783-786 ◽  
pp. 319-324
Author(s):  
Hai Tao Zhang ◽  
Jian Zhong Cui ◽  
Hiromi Nagaumi

In this paper, Low frequency electromagnetic field and air knife are applied simultaneously to produce large-size AA 7055 aluminum alloy ingots during DC casting. Moreover, the effects of low frequency electromagnetic field and air knife on macro-physical fields during DC casting as well as microstructure and crack in the ingots are studied and analyzed by the numerical and experimental methods. Comparison of the calculated results indicates that applying electromagnetic field can modify the flow direction and increase the velocity of melt flow and homogenize the distribution of temperature in the sump, and applying air knife can homogenize the distribution of temperature and decrease the stress and strain in the solidified ingots. Further, the microstructure of the billet is refined remarkably and the crack is eliminated by applying electromagnetic field and air knife during DC casting because of modification of the macro-physical fields


2014 ◽  
Vol 1019 ◽  
pp. 90-95 ◽  
Author(s):  
H.R. Kotadia ◽  
J.B. Patel ◽  
H Tian Li ◽  
F. Gao ◽  
Z. Fan

In order to fabricate high quality aluminium products, it is first essential to produce high quality billets/slabs. One of the key objectives associated with casting processes is to be able to control the as-cast structure. A novel direct chill (DC) casting process, the melt conditioned direct chill (MC-DC) casting process, has been developed for production of high quality aluminium billets. In the MC-DC casting process, a high shear device is submerged in the sump of the DC mould to provide intensive melt shearing, which in turn, disperses potential nucleation particles, creates a macroscopic melt flow to uniformly distribute the dispersed particles, and maintains a uniform temperature and chemical composition throughout the melt in the sump. The effect of intensive shearing on the complex microstructure evolution observed after MC-DC is explained on the basis of nucleation and growth behavior. Complete suppression of typical columnar grain growth and significant equiaxed grain refinement is observed. The solidification mechanisms responsible for the significant grain refinement by intensive shearing and the morphological evolution of Mg2Si and Fe–containing intermetallic phases are discussed.


2006 ◽  
Vol 15-17 ◽  
pp. 18-23 ◽  
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.


2011 ◽  
Vol 105-107 ◽  
pp. 1616-1619
Author(s):  
Zhi Qiang Zhang ◽  
Qi Chi Le ◽  
Jian Zhong Cui

AZ80 magnesium alloy was semi-continuously cast under different physical fields which were conventional direct chill (DC) casting, low frequency electromagnetic casting (LFEC), ultrasonic casting (USC) and electromagnetic-ultrasonic combined casting (ECUC), respectively. The effect of different physical fields on solidification structures of AZ80 alloys was investigated. The results show that compared with the conventional DC casting, structures of AZ80 alloys billets cast with LFEC and USC have been greatly refined. The effective refinement takes place in the edge of billets when LFEC is applied. However, the effective refinement takes place in the center of billets when USC is applied. When combination of low frequency electromagnetic and ultrasonic fields is applied during semi-continuous casting AZ80 magnesium alloy billet, structures of AZ80 alloys are refined significantly in the whole billets everywhere and more uniform.


2007 ◽  
Vol 546-549 ◽  
pp. 707-712
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

Low frequency electromagnetic casting is a new developed technology that appears in the recent years. In this paper, a comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for calculation of the electromagnetic field and the latter for calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from one 7XXX aluminum alloy billet of 200mm in diameter, during the LFEC casting processes, respectively. There was a good agreement between the calculated results and the measured results. Further, the effects of electromagnetic frequency on fluid flow, temperature field and solidification during LFEC process have investigated numerically by using the mathematic model. The choosing criterion of the electromagnetic frequency during LFEC process has been used in order to obtain the best structure of the billets by analyzing the effects of fluid flow and temperature field on the solidification process in the presence of electromagnetic field.


2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


Sign in / Sign up

Export Citation Format

Share Document