Effect of Tool Wear on Surface Qualities in Milling of TC4

2016 ◽  
Vol 836-837 ◽  
pp. 132-138 ◽  
Author(s):  
Shu Cai Yang ◽  
Xiao Yang Cui ◽  
Yu Hua Zhang ◽  
Zhi Wei Wang

Tool wear is easy occurred in titanium alloy milling process which will affect the surface quality. Surface roughness and surface morphology as an important index to describe and evaluate the surface quality has a great influence on service performance. Therefore, the study on the effect of tool wear on surface qualities is important to improve the surface integrity of titanium alloy parts. Cutting radius of ball-end milling cutter is solved to analyze the effect of tool wear on the cutting radius. The tool wear and the surface qualities of TC4 are achieved through wear experiment. And then the influence law of tool wear on surface qualities and chip morphology are analyzed. The results show that surface roughness value decrease firstly and then increases and that chip morphology with flank wear increase from the unit chip to the serrated chip.

Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


2010 ◽  
Vol 443 ◽  
pp. 353-358 ◽  
Author(s):  
Harshad A. Sonawane ◽  
Suhas S. Joshi

The ball end milling process, commonly used for generating complex shapes, involves continuous variation in the uncut chip dimensions, which depends on the cutter geometry and the machining parameters. The proposed analytical model evaluates the undeformed and the deformed chip dimensions including chip length, width and thickness. The undeformed and deformed chip dimensions, is a function of cutter rotation angle, instantaneous cutter radius, helix angle, and other processing parameters. The surface quality, in the form of surface roughness, during high-speed ball end milling of Inconel 718 is also analysed in this paper.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2013 ◽  
Vol 773-774 ◽  
pp. 437-447
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Abou Ei Hossein A. Khaled ◽  
D. Sujan

This research presents the performance of Aluminum nitride ceramic in end milling using using TiAlN and TiN coated carbide tool insert under dry machining. The surface roughness of the work piece and tool wear was analyzed in this. The design of experiments (DOE) approach using Response surface methodology was implemented to optimize the cutting parameters of a computer numerical control (CNC) end milling machine. The analysis of variance (ANOVA) was adapted to identify the most influential factors on the CNC end milling process. The mathematical predictive model developed for surface roughness and tool wear in terms of cutting speed, feed rate, and depth of cut. The cutting speed is found to be the most significant factor affecting the surface roughness of work piece and tool wear in end milling process.


2016 ◽  
Vol 16 (4) ◽  
pp. 255-261
Author(s):  
Tamiloli N ◽  
Venkatesan J

AbstractMachining of alloy materials at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality. Thus, developing a model for estimating the cutting parameters and optimizing this model to minimize the surface roughness and cutting temperatures becomes utmost important to avoid any damage to the quality surface. This paper presents the development of new models and optimizing these models of machining parameters to minimize the surface roughness and cutting temperature in end milling process by Taguchi method with the statistical approach. Two objectives have been considered, minimum arithmetic mean roughness (Ra) and cutting temperature. Due to the complexity of this machining optimization problem, a single objective Taguchi method has been applied to resolve the problem, and the results have been analyzed.


Author(s):  
Jiahao Shi ◽  
Qinghua Song ◽  
Zhanqiang Liu ◽  
Yi Wan

Numerous hard, brittle metals have been shown to form segmented chips during machining operations, which has been shown to be linked to high vibration levels in turning and milling processes. This article concerns quantitative comprehension of segmentation-driven vibration in end-milling process. First, dynamic model of milling process with impact of segmented chip is presented, and a periodic cutting force model related with segmented chip is proposed. Second, for experimental observation, a series of tests are carried out concerning modal test of cutting system; chip morphology, tool vibration during cutting, surface location error, and high-frequency sampling measurements of cutting force signal are realized. The method used for calculating the frequency of segmentation chip by oblique cutting is deduced. It is found that at low feed rate, the periodic cutting force is affected by the natural frequency of cutting system, segmentation chip, and tool vibration. Finally, amplitude–frequency response for quasi-single degree of freedom is employed to elaborate the relationship between segmentation frequency and natural modes of system. The results show that when the ratio (frequency of segmented chip to natural frequency of system) is a noninteger value or above 3, no significant vibrations of cutting system are observed in milling titanium alloy Ti6Al4V.


2014 ◽  
Vol 800-801 ◽  
pp. 180-185 ◽  
Author(s):  
Teng Da Wang ◽  
Er Liang Liu ◽  
Zhen Li ◽  
Hong Yan Ju ◽  
Yong Chun Zheng

In titanium alloy machining, under different cooling lubrication conditions, the variation of tool wear and chip morphology have a certain effect on the surface roughness. Under different cooling lubrication conditions, in order to analyze the variation of tool wear, chip morphology and surface roughness, the surface roughness values are measured ​​and the variation in tool wear and chip morphology are observed, and then the interaction relationship between the tool wear and the chip morphology is analyzed. The results show that the tool wear and chip morphology influence on the surface roughness. Under different cooling lubrication, the rake face wear do not change significantly, but wet cooling and MQL play a protective role for the flank face wear.


Sign in / Sign up

Export Citation Format

Share Document