Microstructure Evolution and Hardness of AlCrFeNixMo0.2 High Entropy Alloy

2016 ◽  
Vol 849 ◽  
pp. 40-44 ◽  
Author(s):  
Yong Dong ◽  
Dong Xu Qiao ◽  
Huan Zhi Zhang ◽  
Yi Ping Lu ◽  
Tong Min Wang ◽  
...  

The microstructures, phase composition and hardness of the AlCrFeNixMo0.2 high entropy alloy (x=0.5, 0.8, 1.2 and 1.5, the x values refer to molar ratio) were reported. When the value of x was smaller than 1.2, the alloys consisted of BCC and B2 structures. The BCC and B2 phases were identified to be (Cr, αFe) solid solution and NiAl intermetallic compound, respectively. With the increase of x from 0.5 to 1.2, the microstructure transformed from dendrite/inter-dendrite to eutectic microstructures. When the x was equal to 1.5, besides BCC and B2 phases, another CrFe2.32MoNi phases formed and Net-like (Cr, αFe) phases distributed in the NiAl intermetallic compound matrix. The hardness first decreased then increased with the increase of Ni content. Generally, Ni element is a FCC stabilizer. However, in AlCrFeNixMo0.2 alloys, Ni element promoted the formation of B2 and CrFe2.32MoNi phases. The influence mechanism of Ni element was discussed systematically.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2054
Author(s):  
Junqi Liu ◽  
Xiaopeng Wang ◽  
Ajit Singh ◽  
Hui Xu ◽  
Fantao Kong ◽  
...  

High-performance structural materials are critical to the development of transportation, energy, and aerospace. In recent years, newly developed high-entropy alloys with a single-phase solid-solution structure have attracted wide attention from researchers due to their excellent properties. However, this new material also has inevitable shortcomings, such as brittleness at ambient temperature and thermodynamic instability at high temperature. Efforts have been made to introduce a small number of intermetallic compounds into single-phase solid-solution high-entropy alloys as a secondary phase to their enhance properties. Various studies have suggested that the performance of high-entropy alloys can be improved by introducing more intermetallic compounds. At that point, researchers designed an intermetallic compound-strengthened high-entropy alloy, which introduced a massive intermetallic compound as a coherent strengthening phase to further strengthen the matrix of the high-entropy alloy. Inspired from this, Fantao obtained a new alloy—high-entropy intermetallics—by introducing different alloying elements to multi-principalize the material in a previous study. This new alloy treats the intermetallic compound as the main phase and has advantages of both structural and functional materials. It is expected to become a new generation of high-performance amphibious high-entropy materials across the field of structure and function. In this review, we first demonstrate the inevitability of intermetallic compounds in high-entropy alloys and explain the importance of intermetallic compounds in improving the properties of high-entropy alloys. Secondly, we introduce two new high-entropy alloys mainly from the aspects of composition design, structure, underlying mechanism, and performance. Lastly, the high-entropy materials containing intermetallic compound phases are summarized, which lays a theoretical foundation for the development of new advanced materials.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 558 ◽  
pp. 149945
Author(s):  
Yu-An Shen ◽  
Sheng-Wen Chen ◽  
Hao-Zhe Chen ◽  
Chun-Ming Chang ◽  
Yu-Hong Ouyang

Wear ◽  
2021 ◽  
Vol 474-475 ◽  
pp. 203755 ◽  
Author(s):  
Zhuo Cheng ◽  
Lu Yang ◽  
Zhikun Huang ◽  
Tian Wan ◽  
Mingyu Zhu ◽  
...  

Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


2015 ◽  
Vol 37 (1) ◽  
pp. 21-26 ◽  
Author(s):  
I. V. Karpets’ ◽  
O. M. Myslyvchenko ◽  
M. O. Krapivka ◽  
V. F. Gorban’ ◽  
O. S. Makarenko ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1290 ◽  
Author(s):  
Ning Liu ◽  
Chen Chen ◽  
Isaac Chang ◽  
Pengjie Zhou ◽  
Xiaojing Wang

To study the effect of alloy composition on phase selection in the CoCrCu0.1FeMoNi high-entropy alloy (HEA), Mo was partially replaced by Co, Cr, Fe, and Ni. The microstructures and phase selection behaviors of the CoCrCu0.1FeMoNi HEA system were investigated. Dendritic, inter-dendritic, and eutectic microstructures were observed in the as-solidified HEAs. A simple face centered cubic (FCC) single-phase solid solution was obtained when the molar ratio of Fe, Co, and Ni was increased to 1.7 at the expense of Mo, indicating that Fe, Co, and Ni stabilized the FCC structure. The FCC structure was favored at the atomic radius ratio δ ≤ 2.8, valence electron concentration (VEC) ≥ 8.27, mixing entropy ΔS ≤ 13.037, local lattice distortion parameter α2 ≤ 0.0051, and ΔS/δ2 > 1.7. Mixed FCC + body centered cubic (BCC) structures occurred for 4.1 ≤ δ ≤ 4.3 and 7.71 ≤ VEC ≤ 7.86; FCC or/and BCC + intermetallic (IM) mixtures were favored at 2.8 ≤ δ ≤ 4.1 or δ > 4.3 and 7.39 < VEC ≤ 8.27. The IM phase is favored at electronegativity differences greater than 0.133. However, ΔS, α2, and ΔS/δ2 were inefficient in identifying the (FCC or/and BCC + IM)/(FCC + BCC) transition. Moreover, the mixing enthalpy cannot predict phase structures in this system.


Sign in / Sign up

Export Citation Format

Share Document