In Situ Synthesis and Oxidation Behavior of Ti-Al-Ag Ternary Coatings

2016 ◽  
Vol 849 ◽  
pp. 702-708
Author(s):  
Lei Yang ◽  
Hua Li ◽  
He Zhou Liu ◽  
Yang Yang Zhang

Mixture powders with different ratio of Ag/γ-TiAl were deposited on titanium alloy by low presure plasma spray and thermal treatment was applied to convert the mixture coatings into Ti-Al-Ag ternary ones. The experimental results indicated that the oxidation resistance of ternary coatings was better than sheer γ-TiAl coating and increased with increasing Ag from 2at.% to 4at.% at 700 and 800°C. The outside oxide scale consisted of alumina and a small amount of rutile due to the insufficient diffusion of Ag in γ-TiAl.

2014 ◽  
Vol 915-916 ◽  
pp. 562-566 ◽  
Author(s):  
Z.X. Shi ◽  
Shi Zhong Liu ◽  
M. Han ◽  
J.R. Li

The specimens of single crystal superalloy DD6 with 0.10% Hf and 0.47% Hf were prepared in the directionally solidified furnace. The effect of Hf content on the isothermal oxidation resistance of the second generation single crystal superalloy DD6 was studied at 1000°Cin ambient atmosphere. Morphology of oxides was examined by SEM, and their composition was analyzed by XRD and EDS. The experimental results show that the oxidation resistance of DD6 alloy with 0.47% Hf is better than that of the alloy with 0.10% Hf. The alloy with different Hf content all obeys parabolic rate law during oxidation for 100h at 1000°C. The increase of Hf content can promote the Al2O3 formation and decreases the proportion of NiO. The oxide grain size and the thickness of the oxide layer all reduce with increasing of Hf content. The oxide scale of the alloy with different Hf content is made up of an outer NiO layer with a small amount of Co3O4, inner Al2O3 and Cr2O3 layer with a small amount of TaO2.


2014 ◽  
Vol 528 ◽  
pp. 25-29
Author(s):  
Ling Yun Bai ◽  
Xian Chao Xu ◽  
Jun Huai Xiang ◽  
Yun Xiang Zheng ◽  
Jun Wang

The cyclic oxidation behavior of Co-10Cr-5Al alloys in atmosphere at 700 °C was investigated. The addition of 0.3 at.% Y changed the oxidation behavior from the approximate parabolic rate law to complex mode. The scale grown on the surface of Co-10Cr-5Al cracked seriously, while the oxide scale the Y doped alloy had better adhesive property. Yttrium doped in the sample promoted the forming of continuous Al2O3layer and decreased the oxidation rate of Co-10Cr-5Al alloys.


2017 ◽  
Vol 729 ◽  
pp. 679-687 ◽  
Author(s):  
Xue Gong ◽  
Ruirun Chen ◽  
Qi Wang ◽  
You Wang ◽  
Nannan Zhang ◽  
...  

2007 ◽  
Vol 546-549 ◽  
pp. 1489-1494 ◽  
Author(s):  
Ai Qin Liu ◽  
Shu Suo Li ◽  
Lu Sun ◽  
Ya Fang Han

Nb-16Si-24Ti-6Cr-6Al-2Hf-xB(x=0, 0.5, 1, 2, 4, 6) in situ composites were prepared by arc-melting. Microstructure and the effect of boron on 1250C oxidation resistance of the composites were investigated by scanning electron microscopy(SEM) and X-ray energy disperse spectrum(EDS) as well as X-ray diffraction(XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was remarkably improved by adding proper amount of boron. This may be resulted from several beneficial roles of boron, i.e., boron improves the resistance of Nb5Si3 by solid solution strengthening, inhibits the diffusion of oxygen in the matrix, improves the adherence between the oxide scale and the substrate and increases the cracking resistance of the oxide scale.


2007 ◽  
Vol 546-549 ◽  
pp. 1253-1256
Author(s):  
Qing Li ◽  
Jin Xia Song ◽  
Cheng Bo Xiao ◽  
Shi Yu Qu ◽  
Ding Gang Wang ◽  
...  

The isothermal oxidation behavior of a new developed Ni base superalloy named DM02 for high temperature dies was studied in this paper. The dynamic curve was achieved by monitoring weight gain of the alloy as a function of time. The results showed that the alloy had fairly good oxidation resistance at 1050°C and 1100°C. The oxidation kinetics at both 1050°C and 1100°C followed parabolic rules in segment. It has been found that the oxidation of the alloy was controlled by multi-oxides of (Ni, Co)O, (Ni, Co)Al2O4, and NiWO4, growth mechanism in the primary stage, and by Al2O3, NiAl2O4 growth mechanism in the following stage. After oxidation at 1050°C for 100h, the oxide scale of the alloy was mainly composed of two areas. Some were thin uniform (Ni, Co)Al2O4(outer)/Al2O3 (inner) composites scale and others were multi-layer oxide scale of ( Ni,Co)O / multi-oxides (mainly NiWO4、NiO and NiAl2O4.) /Al2O3.


2010 ◽  
Vol 97-101 ◽  
pp. 530-533 ◽  
Author(s):  
Yun Long Yang ◽  
Zhan Yi Cao ◽  
Yang Qi ◽  
Yong Bing Liu

The oxidation behavior of two ductile cast irons was investigated in this paper. The alloys were a high Si-Mo ductile and a ductile Ni-Resist cast iron which were developed by FAW Foundry. Polished sections were exposed at temperatures between 800 °C and 1000 °C, mostly for 80h. It has been found that the property of oxidation resistance of ductile Ni-Resist cast iron is excellent or better than that of high Si-Mo ductile by comparison and analysis.


2017 ◽  
Vol 24 (08) ◽  
pp. 1750112
Author(s):  
YAN SHEN ◽  
PRASANTA K. SAHOO ◽  
YIPENG PAN

In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.


2004 ◽  
Vol 842 ◽  
Author(s):  
Akira Yamauchi ◽  
Kyousuke Yoshimi ◽  
Shuji Hanada

ABSTRACTIsothermal oxidation behavior of Mo/Mo5SiB2in-situ composites containing small amounts of Al was investigated under an Ar-20%O2 atmosphere in the temperature range of 1073–1673 K. The Mo/Mo5SiB2in-situ composites, (Mo-8.7mol%Si-17.4mol%B)100-xAlx (x=0, 1, 3, and 5mol%), were prepared by Ar arc-melting, and then homogenized at 2073 K for 24 h in an Ar-flow atmosphere. Without addition of Al, Mo/Mo5SiB2in-situ composite exhibits a rapid mass loss at the initial oxidation stage, followed by passive oxidation after the substrate is sealed with borosilicate glass in the temperature range of 1173–1473 K, whereas it exhibits a rapid mass gain around 1073 K. On the other hand, small Al additions, especially of 1 mol%, significantly improve the oxidation resistance of Mo/Mo5SiB2in-situ composites at temperatures from 1073–1573 K. The excellent oxidation resistance is considered to be due to the rapid formation of a continuous, dense scale of Al-Si-O complex oxides. The protective oxide scales contain crystalline oxides, and the amounts of the crystalline oxides obviously increase with Al concentration.


Sign in / Sign up

Export Citation Format

Share Document