Development and Characterization of New Ti-25Ta-Zr Alloys for Biomedical Applications

2021 ◽  
Vol 1016 ◽  
pp. 137-144
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Fernanda de Freitas Quadros ◽  
Mycaela Vieira Nascimento ◽  
Carlos Roberto Grandini

This paper deals with the study of the development, structural and microstructural characterization and, selected mechanical properties of Ti-25Ta-50Zr alloy for biomedical applications. The alloy was melted in an arc furnace and various solution heat treatments were performed to analyze the influence of the temperature and time on the structure, microstructure, microhardness and elastic modulus of the samples. The structural and microstructural results, obtained by X-ray diffraction and microscopy techniques, showed that the solution heat treatment performed at high temperatures induces the formation of the β phase, while solution heat treatment performed at low temperatures induces the formation of the α” and ω metastable phases. Regarding the effect of time, samples subjected to heat treatment for 6 hours have only the β phase, indicating that lengthy treatments suppress the α” phase. Regarding the hardness and elastic modulus, the alloy with the α” and ω phases, after treatment performed at a temperature of 500 °C, has a high hardness value and elastic modulus due to the presence of the ω phase that hardens and weakens alloys. The titanium alloys developed in this study have excellent mechanical properties results for use in the orthopedic area, better than many commercial materials such as cp-Ti, stainless steel and Co-Cr alloys.

Author(s):  
H Yousefpour Naghibi ◽  
H Omidvar ◽  
M Farahmand Nikoo

In this study, 6 mm thick AA6061-T6 plates were friction stir welded (FSWed) at different traveling speeds while Al2O3 nano-particles were incorporated between adjoining plates. The solution heat treatment was applied on samples for one hour at 540 ℃ and subsequently aged for 18 h at 180 ℃ to investigate the effect of post-weld heat treatment on mechanical properties of specimens. All joints were investigated macro- and micro-structurally. The microstructural characterization of the FSWed samples was carried out using scanning electron microscopy (SEM) and light microscopy techniques. Distribution of Al2O3 nano-particles in the stir zone was studied by SEM. The specimen FSWed at 40 mm/min exhibited the most homogeneous particles distribution. Tensile properties including ultimate tensile strength, elongation, and fracture surfaces were studied. Microhardness of specimens was also investigated. Surprisingly, all specimens exhibited inferior hardness compared to the as-received AA6061-T6 alloy. This phenomenon was attributed to the dissolution of precipitates during FSW process.


2007 ◽  
Vol 342-343 ◽  
pp. 553-556
Author(s):  
Won Yong Kim

Mechanical properties and elastic modulus were examined in order to clarify the influence on microstructures in Ti-26Nb-xSi, where x= 0.5, 1 in atomic percent, prepared by arc melting, cold rolling and recrystallization heat treatment. On the basis of microstructural observations and phase analyses, it is evidently revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. Elongated structure parallel to the rolling direction was observed in cold rolled samples, and equiaxed structure with the average grain size of about 20μm was developed for the sample after recrystallization heat treatment. Randomly distributed feature of pole figure was characterized without showing a specific texture component in asquenched sample. Rotated cube, α-fiber and γ-fiber texture components were detected in cold-rolled sample. After recrystallization heat treatment the intensity of α-fiber texture component was markedly decreased, while the rotated cube component becomes sharpened and γ-fiber component remains relatively unchanged. From both elastic modulus and strength point of view recrystallization treatment would be desirable to meet the required mechanical properties of the present alloys for biomedical applications.


2012 ◽  
Vol 520 ◽  
pp. 254-259 ◽  
Author(s):  
Ming Wen ◽  
Cui E Wen ◽  
Peter D. Hodgson ◽  
Yun Cang Li

Ti and some of its alloys (e.g. Ti–6Al–4V alloy) have become the metals of choice for the endosseous parts of presently available dental implants. In the present study, Ti-Ta-Ag alloys with a different Ag content were prepared using vacuum sintering (VS) and spark plasma sintering (SPS) process. The microstructure and mechanical properties of the Ti-Ta-Ag alloys were investigated. The results show that dense Ti-Ta-Ag alloys prepared using the SPS process exhibit high hardness and a suitable elastic modulus for implant materials for load-bearing applications. The effect of preparation methods on the microstructure of Ti-Ta-Ag alloys is discussed.


2014 ◽  
Vol 922 ◽  
pp. 75-80 ◽  
Author(s):  
Diego Rafael Nespeque Correa ◽  
Pedro Akira Bazaglia Kuroda ◽  
Carlos Roberto Grandini

New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.


2015 ◽  
Vol 1110 ◽  
pp. 158-162
Author(s):  
Seung Pyo Hong ◽  
Chung Seok Kim

The effects of two-step solution heat treatment of aluminum alloy for lightweight automotive have been investigated. The test specimens, Al-6Si-2Cu alloys are prepared by gravity casting process. Solution heat treatments in this study are applied to improve of mechanical properties through a single-step or two-step solution heat treatment. For the microstructural characterization, inductively coupled plasma mass spectromerty (ICP-MS), optical microscope (OM) and scanning electron microscope (SEM) analyses are conducted in specimen. The X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analyses are also applied to identify the intermetallic phases with quantitative and qualitative analyses. Micro Vickers hardness and static tensile test are achieved. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 37um. In addition to the Al matrix, a large amount of coarsen eutectic Si, Al2Cu intermetallic phases and Fe-rich phases are identified. After solution heat treatment, the mechanical properties of two-step solution heat treatment alloy show higher values than as-cast and single-step solution specimens. Consequentially, the two-step solution heat treatment could be used in automotive parts to improve mechanical properties.


2006 ◽  
Vol 116-117 ◽  
pp. 181-184 ◽  
Author(s):  
Antonio Forn ◽  
Maite T. Baile ◽  
Enric Martín ◽  
Javier Goñi ◽  
I. Sarriés

The present work studies the effect the solution heat treatment, during artificial ageing and re-aging, has on the mechanical properties of an A357 aluminium alloy component formed by New Rheocasting. The effect that the evolution of silicon, during the solution treatment at various times, has on the mechanical properties was also examined. The mechanical properties were evaluated performing tensile tests, fractographical analysis and hardness tests. The microstructural characterization was made using optical and electronic microscopy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seungjin Nam ◽  
Sooun Lee ◽  
Aeran Roh ◽  
Hansol Son ◽  
Miso Kim ◽  
...  

AbstractWe investigated the reinforcing effect of supersaturated Al-C phases on the mechanical properties of Al/C60 composites produced via powder metallurgy followed by thermal treatment. We controlled the fractions of C60-fullerenes, nano-scale carbides, and Al-C supersaturated phases in the Al/C60 composites by adjusting the heat-treatment temperature and duration. Furthermore, we examined the contribution of each phase on the elastic and plastic behavior of the composites using scanning acoustic microscopy (SAM) and hardness measurements. After heat treatment, a supersaturated Al-C phase and an Al carbide were formed in the Al/C composites by decomposition of individually dispersed C60. This led to enhancement of the hardness and elastic modulus of the Al/C composites heat-treated at 450 and 500 °C, while these properties were reduced in the 650 °C heat-treated composite. Notably, the 500 °C heat-treated composites showed significantly high hardness and elastic modulus (approximately 250 Hv and 77.8 GPa, respectively) owing to the substantially large contribution of the supersaturated Al-C phases, which was theoretically calculated to be 851 GPa/vol% and 227 GPa/vol%, respectively. This is possibly because the well-dispersed C in the atomic scale changed the elastic bonding characteristics of the metallic bonds between the Al atoms.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 712 ◽  
Author(s):  
Peiyou Li ◽  
Xindi Ma ◽  
Duo Wang ◽  
Hui Zhang

The microstructural and mechanical properties of β-type Ti85-xNb10+xSn5 (x = 0, 3, 6, 10 at.%) alloys with low elastic modulus were investigated. The experimental results show that the Ti85Nb10Sn5 and Ti75Nb20Sn5 alloys are composed of simple α and β phases, respectively; the Ti82Nb13Sn5 and Ti79Nb16Sn5 alloys are composed of β and α″ phases. The content of martensite phase decreases with the increase of Nb content. The Ti82Nb13Sn5 and Ti79Nb16Sn5 alloys show an inverse martensitic phase transition during heating. The Ti85Nb10Sn5 and Ti82Nb13Sn5 alloys with the small residual strain exhibit the good superelastic properties in 10-time cyclic loading. The reduced elastic modulus (Er) of the Ti75Nb20Sn5 alloy (61 GPa) measured by using the nanoindentation technique is 2–6 times of that of human bone (10–30 GPa), and is smaller than that of commercial Ti-6Al-4V biomedical alloy (120 GPa). The Ti75Nb20Sn5 alloy can be considered as a novel biomedical alloy. The wear resistance (H/Er) and anti-wear capability (H3/Er2) values of the four alloys are higher than those of the CP–Ti alloy (0.0238), which indicates that the present alloys have good wear resistance and anti-wear capability.


Sign in / Sign up

Export Citation Format

Share Document