A Novel Method for Grinding Wheel Setting Based on Acoustic Emissions

2016 ◽  
Vol 874 ◽  
pp. 79-84 ◽  
Author(s):  
Xiang Long Zhu ◽  
Zhen Hua Jiao ◽  
Ren Ke Kang ◽  
Zi Guang Wang ◽  
Hui Xu

Wheel setting is difficult in a grinding process and may directly apply a negative impact on grinding accuracy and efficiency. This study presents a novel method for grinding wheel setting based on acoustic emissions. The method experimentally detects the acoustic emission (AE) signals that come from the touch-down of the grinding wheel with the workpiece. The experimental results show that the measured AE signals monotonically increase with grinding depth and can be used for detection of wheel setting in a grinding process with a detection accuracy better than 0.5μm.

2007 ◽  
Vol 329 ◽  
pp. 15-20 ◽  
Author(s):  
Xun Chen ◽  
James Griffin

The material removal in grinding involves rubbing, ploughing and cutting. For grinding process monitoring, it is important to identify the effects of these different phenomena experienced during grinding. A fundamental investigation has been made with single grit cutting tests. Acoustic Emission (AE) signals would give the information relating to the groove profile in terms of material removal and deformation. A combination of filters, Short-Time Fourier Transform (STFT), Wavelets Transform (WT), statistical windowing of the WT with the kurtosis, variance, skew, mean and time constant measurements provided the principle components for classifying the different grinding phenomena. Identification of different grinding phenomena was achieved from the principle components being trained and tested against a Neural Network (NN) representation.


2013 ◽  
Vol 690-693 ◽  
pp. 2442-2445 ◽  
Author(s):  
Hao Lin Li ◽  
Hao Yang Cao ◽  
Chen Jiang

This work presents an experiment research on Acoustic emission (AE) signal and the surface roughness of cylindrical plunge grinding with the different infeed time. The changed infeed time of grinding process is researched as an important parameter to compare AE signals and surface roughnesses with the different infeed time in the grinding process. The experiment results show the AE signal is increased by the increased feed rate. In the infeed period of the grinding process, the surface roughness is increased at first, and then is decreased.


2012 ◽  
Vol 198-199 ◽  
pp. 60-63
Author(s):  
Wen Qin Han ◽  
Jin Yu Zhou

Acoustic emission (AE) monitoring is the primary technology used for the identification of different types of failure in composite materials. Tensile test were carried out on twill-weave composite specimens, and acoustic emissions were recorded from these tests. AE signals were decomposed into a set of Intrinsic Mode Functions(IMF) components by means of Empirical Mode Decomposition(EMD) , the Fast Fourier Transform (FFT) of each IMF component was performed, it was shown that the event peak frequency of each IMF component could be directly related to the materials damage modes.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 93 ◽  
Author(s):  
Zhenrong Deng ◽  
Rui Yang ◽  
Rushi Lan ◽  
Zhenbing Liu ◽  
Xiaonan Luo

Small scale face detection is a very difficult problem. In order to achieve a higher detection accuracy, we propose a novel method, termed SE-IYOLOV3, for small scale face in this work. In SE-IYOLOV3, we improve the YOLOV3 first, in which the anchorage box with a higher average intersection ratio is obtained by combining niche technology on the basis of the k-means algorithm. An upsampling scale is added to form a face network structure that is suitable for detecting dense small scale faces. The number of prediction boxes is five times more than the YOLOV3 network. To further improve the detection performance, we adopt the SENet structure to enhance the global receptive field of the network. The experimental results on the WIDERFACEdataset show that the IYOLOV3 network embedded in the SENet structure can significantly improve the detection accuracy of dense small scale faces.


2012 ◽  
Vol 569 ◽  
pp. 343-346
Author(s):  
Xiang Hong Wang ◽  
Hong Wei Hu ◽  
Zhi Yong Zhang

Received acoustic emission (AE) signals are transmitted across structural interfaces in many real-world applications. This paper studies attenuation of the signals across two common structural interfaces. The experimental results indicate that interface has effects on attenuation, which depends on the relative scales of structures. Signal energy is strengthened due to multiple flections of signals on the small-size structure when an interface is constructed by different scales. Thus the received signals are distorted worse than the original signals. So it is a better way to mount sensors on a simple structure with a size as much as a structure incurred AE sources.


2009 ◽  
Vol 87-88 ◽  
pp. 445-450
Author(s):  
Zhao Hui Hu ◽  
Hong Jun Liu ◽  
Rong Guo Wang ◽  
Xiao Dong He ◽  
Li Ma

The buckling deformation of the liner within composite pressure vessel is investigated using acoustic emission (AE) signals. The liner will fail with buckling deformation which is casued by compression stress induced by deformation compatibility beween composite layer and the liner. The experimental results show that these high-amplitude signals higher than 80dB are responsible for the buckling deformation of the liner within composite pressure vessel during unloading process.


Author(s):  
Hiroyuki Ohta ◽  
Shinya Hayashi ◽  
Soichiro Kato ◽  
Yutaka Igarashi

In this paper, vibrations and acoustic emissions (AEs) of defective linear-guideway type recirculating ball bearings under grease lubrication were measured. The experimental results show that the vibration and AE amplitudes (the pulse amplitudes, the RMS values) of both the normal and defective bearings have a tendency to be reduced when a grease with higher base oil viscosity is used. Under the same type of grease, the RMS values of the vibrations and AE of the defective bearings increase as the defect angle increases. However, the increases of the RMS values due to increased defect angle are reduced when a grease with higher base oil viscosity is used.


1999 ◽  
Author(s):  
Ming Chen ◽  
Bing-Yuan Xue

Abstract Comprehensive experiments have been conducted to investigate the monitoring technique for grinding process automation with acoustic emission (AE) signal. The AE signal generated during the grinding process is analyzed to determine its sensitivity to process. The detection of contact between the grinding wheel and workpiece and in-process prediction of grinding burn have been discussed in sequence. The results have been obtained as follows: (1) AE contact detector can save the non-machine time remarkably, thus high efficiency is available. (2) An effective intelligent sensing system has been developed and grinding burn can predicted. As mentioned above, AE technique has found wide applications in the grinding process automation.


2012 ◽  
Vol 591-593 ◽  
pp. 1178-1183
Author(s):  
Wan Li Li ◽  
Liang Qing Lu

Mounting accuracy is of great importance to the performance of the Doppler-based navigation techniques. In this paper, a novel method for alignment calibration of IMU and Doppler sensors is presented. The presented scheme is based on the information from INS/GPS integration and Doppler. Different from previously reported techniques, not only the misalignments but also the scale factor error is considered in this study. By using a Kalman filter, the alignment matrix which is consisted of a misalignment matrix multiplying with a scale factor is estimated. The performance of the alignment estimates is evaluated with field experimental data over Yangzi River. Experimental results shown the estimates obtained by the proposed method perform much better than the existing solution. By using the proposed method, the accuracies of the transformed velocity and positioning are both increased.


2005 ◽  
Vol 291-292 ◽  
pp. 207-212 ◽  
Author(s):  
Hitoshi Ohmori ◽  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
...  

Metal bonded diamond grinding wheels are widely used in the grinding process, especial in ELID grinding. However, truing is difficult owing to the high toughness of metal bond materials and high hardness of diamond abrasives. To realize high precision and high-efficiency truing, we propose a new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing in this paper. The process principle and fundamental experimental results are introduced, and the truing performance is discussed. Research results show that the proposed new method is effective for truing metal bonded diamond grinding wheels.


Sign in / Sign up

Export Citation Format

Share Document