Effect of Sintering Temperature on Zinc Substituted Calcium Phosphate Ceramics

2017 ◽  
Vol 890 ◽  
pp. 209-212
Author(s):  
C.M. Mardziah ◽  
Mohamad Firdaus Abdul Wahid ◽  
Koay Mei Hyie ◽  
Nik Rozlin Nik Masdek ◽  
Z. Salleh

Calcium phosphate ceramics were substituted with several concentrations of zinc ions (0, 5, 10 and 15 mol%) using precipitation method. The effect of sintering temperature at 900 and 1000°C on zinc substituted calcium phosphate ceramics were observed. By increasing the sintering temperature, XRD peaks for zinc substituted calcium phosphate ceramics changed significantly. At sintering temperature of 900°C, hydroxyapatite phase was the major phase in the calcium phosphates containing 0 and 5 mol% zinc. However, at the sintering temperature of 1000°C, hydroxyapatite phase was partly transformed to another phase which was tricalcium phosphate. FESEM observations at sintering temperature of 1000°C exhibit that the particle size of the samples increased with addition of more zinc ions.

2006 ◽  
Vol 309-311 ◽  
pp. 263-266 ◽  
Author(s):  
Masato Tamai ◽  
Ryusuke Nakaoka ◽  
Toshie Tsuchiya

The cytotoxicity of five calcium phosphate ceramics, hydroxyapatite (HAp), flouroapatite (FAp), α-tricalcium phosphate (α-TCP), β-tricalcium phosphate (β-TCP) and tetracalcium phosphate (TTCP), was investigated. Based on the guidelines of biological test for medical devices in Japan, a cytotoxicity test of these calcium phosphates was carried out using Chinese hamster V79 lung fibroblasts. The cytotoxic study revealed that FAp and α-TCP showed high cytotoxicities. From various analyses, it was considered that the cytotoxicity of the FAp was due to fluorine ions extracted in a culture medium and the cytotoxicity of α-TCP resulted from a decrease in pH of the medium by the phosphoric acid, which produced by hydrolysis of( the α-TCP.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3436
Author(s):  
Antonia Ressler ◽  
Maja Antunović ◽  
Matija Cvetnić ◽  
Marica Ivanković ◽  
Hrvoje Ivanković

The aim of this study was to prepare a biomimetic selenium substituted calcium phosphate system for potential application in osteosarcoma therapy. Calcium phosphate (CaP) systems substituted with selenite ions were prepared by the wet precipitation method, using biogenic CaCO3 (derived from cuttlefish bone), CO(NH2)2-H3PO4, and Na2SeO3·5H2O as reagents. Starting reaction mixtures were prepared based on the formula for selenite-substituted hydroxyapatite, Ca10(PO4)6-x(SeO3)x(OH)2, with Ca/(P + Se) molar ratio of 1.67 and Se/(P + Se) molar ratio of: 0, 0.01, 0.05, and 0.10, respectively. The prepared CaP powders were characterized by Fourier transform infrared spectrometry, elemental analysis, scanning electron microscopy, X-ray powder diffraction analysis and Rietveld refinement studies. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37 °C. The metabolic activity of healthy and osteosarcoma cell lines was assessed by cell cytotoxicity and viability test. The as-prepared powders were composed of calcium-deficient carbonated hydroxyapatite (HAp), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). Along with the selenite substitution, the presence of Sr2+, Na+, and Mg2+ was detected as a result of using cuttlefish bone as a precursor for Ca2+ ions. Inductively coupled plasma mass spectrometry analysis showed that the Se/(P + Se) molar ratios of selenite substituted powders are lower than the nominal ratios. Heat treated powders were composed of HAp, α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP). Doping CaP structure with selenite ions improves the thermal stability of HAp. The powder with the Se/(P + Se) molar ratio of 0.007 showed selective toxicity to cancer cells.


2015 ◽  
Vol 763 ◽  
pp. 30-35 ◽  
Author(s):  
C.M. Mardziah ◽  
Mohamad Firdaus Abdul Wahid ◽  
Koay Mei Hyie ◽  
N.R. Nik Roselina

In this work, nanoscale zinc substituted calcium phosphate ceramics substituted were synthesized by simple precipitation method, performed under alkaline solution of pH 10. Three different zinc concentrations (5%, 10% and 15 mol%) were incorporated into calcium phosphate ceramics with experimental ratios of (Ca+Zn)/P were all maintained at 1.67 for easier comparison. The phase composition and lattice parameters for each sample were determined by using X-ray diffraction (XRD) method. Other characterization techniques such as Fourier transform infrared (FTIR) and field emission scanning electron (FESEM) were also utilized to investigate material’s molecule internal bonds properties and powders morphology, respectively. Based on XRD results, zinc ions addition disturbed the calcium phosphate ceramics structure causing its crystallite size to become smaller as the amount of zinc increased. After the powders undergo calcination process, the bands of PO4 in its FTIR spectra increased while the H2O bands decreased. FESEM results showed that the powders are uniform but irregular in shape and tend to agglomerate with increasing zinc fraction.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1955
Author(s):  
Siri Paulo ◽  
Mafalda Laranjo ◽  
Anabela Paula ◽  
Ana Margarida Abrantes ◽  
João Martins ◽  
...  

Bisphosphonate-associated osteonecrosis of the jaw (BRONJ), a post-surgical non-healing wound condition, is one of the most common side effects in patients treated with nitrogen-containing bisphosphonates. Its physiopathology has been related with suppression of bone turnover, of soft tissue healing and infection. Biphasic calcium phosphates (BCP) are used as a drug delivery vehicle and as a bone substitute in surgical wounds. Due to their capacity to adsorb zoledronate, it was hypothesized these compounds might have a protective effect on the soft tissues in BRONJ wounds. To address this hypothesis, a reproducible in vivo model of BRONJ in Wistar rats was used. This model directly relates chronic bisphosphonate administration with the development of osteonecrosis of the jaw after tooth extraction. BCP granules were placed in the alveolus immediately after tooth extraction in the test group. The animals were evaluated through nuclear medicine, radiology, macroscopic observation, and histologic analysis. Encouragingly, calcium phosphate ceramics were able to limit zoledronate toxicity in vivo and to favor healing, which was evidenced by medical imaging (nuclear medicine and radiology), macroscopically, and through histology. The studied therapeutic option presented itself as a potential solution to prevent the development of maxillary osteonecrosis.


2016 ◽  
Vol 721 ◽  
pp. 182-186
Author(s):  
Zilgma Irbe ◽  
Dagnija Loca ◽  
Agnese Pura ◽  
Liga Berzina-Cimdina

α-Tricalcium phosphate is an important ingredient of calcium phosphate bone cements, which are used for bone defect augmentation and repair. In this study sub-micrometre sized α­tricalcium phosphate particles were synthesized by heat treating amorphous calcium phosphate. Size of synthesized particles depended on duration and temperature of heat treatment. Longer duration and higher temperatures produced larger particles. The reactivity of synthesized particles did not correlate with particle size – the smallest particles did not have the highest reactivity. The most reactive particles were prepared at 700-800 °C. The prepared particles were more reactive than those of conventionally synthesized α-tricalcium phosphate.


2007 ◽  
Vol 330-332 ◽  
pp. 39-42 ◽  
Author(s):  
Xue Jiang Wang ◽  
Yu Bao Li ◽  
John A. Jansen ◽  
Shi Hong Li ◽  
Joop G.C. Wolke

The aim of this study is to explore the effects of quenching and milling processing on setting property of calcium phosphate cement (CPC). For this purpose, non-quenched α-tricalcium phosphate (α-TCP) and quenched α-TCP were synthesized and their corresponding cement systems were prepared. The particle size of α-TCP powder was introduced as a variable. Then, setting properties of these CPC systems were estimated. By a comparison between non-quenched CPC and the quenched one, it is found that milling processing mainly influences the initial setting stage by decreasing reactant particle size whereas the quenching treatment affects the final setting stage by changing α-TCP content, which supports that CPC setting initially depends on the surface area of reactants and subsequently on the diffusion through the hydrated layer formed around the reactants.


2007 ◽  
Vol 330-332 ◽  
pp. 91-94 ◽  
Author(s):  
Y. Zhang ◽  
Yoshiyuki Yokogawa ◽  
Tetsuya Kameyama

Biphasic calcium phosphate (BCP) ceramics, a mixture of hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP), of varying HAp/β-TCP ratios were prepared from fine powders. Porous BCP ceramic materials with HAp/β-TCP weight rations of 20/80, 40/60, and 80/20 were prepared. In this study, the bioactivity is reduced at a larger HAp content rate, which is likely related to the high driving pore for the formation of a new phase, and the reaction rate was proportional to the β-TCP. The porous BCP ceramics having a bigger porosity rate can easily under up dissolution. The powder having a larger β-TCP content rate can easily generate a new phase. The dissolution results confirmed that the biodegradation of calcium phosphate ceramics could be controlled by simply adjusting the amount of HAp or β-TCP in the ceramics and porosity rate.


Sign in / Sign up

Export Citation Format

Share Document