Simulation Study of Switching-Dependent Device Parameters of High Voltage 4H-SiC GTOs

2017 ◽  
Vol 897 ◽  
pp. 575-578
Author(s):  
Aderinto Ogunniyi ◽  
James Schrock ◽  
Miguel Hinojosa ◽  
Heather O’Brien ◽  
Aivars J. Lelis ◽  
...  

The silicon carbide (SiC) “Super” gate turn-off thyristor (SGTO) is a viable device for high voltage and fast dI/dt switching applications. These devices are well suited for various pulsed power applications requiring high peak currents in the kilo-amp regime. The turn-on transition speed is determine by the spreading velocity, which depends on applied gate current, applied anode current density, minority carrier lifetime, and both the gate base-width and the drift region of the thyristor. The impact of device parameters on switching performance is discussed in this work.

2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


2007 ◽  
Vol 131-133 ◽  
pp. 1-8 ◽  
Author(s):  
Nathan Stoddard ◽  
Bei Wu ◽  
Ian Witting ◽  
Magnus C. Wagener ◽  
Yongkook Park ◽  
...  

A novel crystal growth method has been developed for the production of ingots, bricks and wafers for solar cells. Monocrystallinity is achievable over large volumes with minimal dislocation incorporation. The resulting defect types, densities and interactions are described both microscopically for wafers and macroscopically for the ingot, looking closely at the impact of the defects on minority carrier lifetime. Solar cells of 156 cm2 size have been produced ranging up to 17% in efficiency using industrial screen print processes.


2006 ◽  
Vol 527-529 ◽  
pp. 1429-1432 ◽  
Author(s):  
S. Balachandran ◽  
T. Paul Chow ◽  
Anant K. Agarwal

We evaluate the performance capabilities and limitations of high voltage 4H-SiC based Bipolar Junction Transistors (BJTs). Experimental forward characteristics of a 4kV BJT are studied and simulations are employed to determine the factors behind the higher than expected specific onresistance (Ron,sp) for the device. The impact of material (minority carrier lifetimes), processing (surface recombination velocity) and design (p contact spacing from the emitter mesa) parameters on the forward active performance of this device are discussed and ways to lower Ron,sp, below the unipolar level, and increase the gain (β) are examined.


2011 ◽  
Vol 8 ◽  
pp. 288-293 ◽  
Author(s):  
Florian Sevenig ◽  
Lena Breitenstein ◽  
Antje Oltersdorf ◽  
Karin Zimmermann ◽  
Martin Hermle

2006 ◽  
Vol 911 ◽  
Author(s):  
David Malta ◽  
J.R. Jenny ◽  
V.F. Tsvetkov ◽  
M. Das ◽  
St. G. Müller ◽  
...  

AbstractA thermal anneal process has been developed that significantly enhances minority carrier lifetime (MCL) in bulk-grown substrates. Microwave photoconductivity decay (MPCD) measurements on bulk grown substrates subjected to this process have exhibited decay times in excess of 35 μs. Electron Beam Induced Current (EBIC) measurements indicated a minority carrier diffusion length (MCDL) of 65 μm resulting in a calculated MCL of 15 μs, well within the range of that measured by MPCD. Deep level transient spectroscopic (DLTS) analysis of samples subjected to this anneal process indicated that a significant reduction of deep level defects, particularly Z1/2, may account for the significantly enhanced lifetimes. The enhanced lifetime is coincident with a transformation of the original as-grown crystal into a strained or disordered lattice configuration as a result of the high temperature anneal process. PiN diodes were fabricated employing 350 μm thick bulk-grown substrates as the intrinsic drift region and thin p- and n-type epitaxial layers on either face of the substrate to act as the anode and cathode, respectively. Conductivity modulation was achieved in these diodes with a 10x effective carrier concentration increase over the background doping as extracted from the differential on-resistance. Significant stacking fault generation observed during forward operation served as additional evidence of conductivity modulation and underscores the importance of reducing dislocation densities in substrates in order to produce a viable bulk-grown drift layer.


2013 ◽  
Vol 50 (5) ◽  
pp. 137-144 ◽  
Author(s):  
J. D. Murphy ◽  
K. Bothe ◽  
R. Krain ◽  
V. V. Voronkov ◽  
R. J. Falster

2005 ◽  
Vol 888 ◽  
Author(s):  
Santhosh Balachandran ◽  
T. Paul Chow ◽  
Anant Agarwal

ABSTRACTWe evaluate the performance capabilities and limitations of high voltage 4H-SiC based Bipolar Junction Transistors (BJTs). Experimental forward characteristics of a 4kV BJT are studied and simulations are employed to determine the factors behind the higher than expected specific on-resistance (Ron,sp) for the device. The impact of material (minority carrier lifetimes), processing (surface recombination velocity) and design (p contact spacing from the emitter mesa) parameters on the forward active performance of this device are discussed and ways to lower Ron,sp, below the unipolar level, and increase the gain (β) are examined. A correlation between the open base blocking behavior (forward blocking) and the current gain (forward active) for 4H-SiC based high-voltage BJTs with lightly doped collector regions is presented and experimental device characteristics are utilized to verify our numerical analysis.


2015 ◽  
Vol 821-823 ◽  
pp. 632-635 ◽  
Author(s):  
Alexey V. Afanasyev ◽  
Boris V. Ivanov ◽  
Vladimir A. Ilyin ◽  
Alexey F. Kardo-Sysoev ◽  
Victor V. Luchinin ◽  
...  

In this paper we report on the effect of temperature and injection level on the effective lifetime of non-equilibrium charge carriers in p-base of 4H-SiC PiN diodes. Studies were carried out on 1kV drift step recovery diodes (DSRDs) with p+-p--n+. The lifetime of non-equilibrium charge carriers in 4H-SiC p+-p--n+ structures increases by an average of 6 times from 250ns to 1.4μs with the increase of the samples temperature from 300K to 673K. However, increase of the injection level in the drift region from 2.3·1016cm-3 to 5.9·1016cm-3 does not affect the lifetime indicating that Shockley-Read-Hall recombination processes are dominating.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 190 ◽  
Author(s):  
Christian Bscheid ◽  
Christian R. Engst ◽  
Ignaz Eisele ◽  
Christoph Kutter

Contactless minority carrier lifetime (lifetime) measurements by means of microwave detected photoconductivity are employed for oxidation process characterization and furnace profiling. Characterization is performed on oxidized float zone substrates with high resistivity and outstanding bulk quality, suggesting that the measured effective lifetime is strongly dominated by interface recombination and therefore reflects the oxide quality. The applied approach requires neither test structures nor time consuming measurements and is therefore of particular interest if high throughput is required. The method is used to investigate the impact of oxidation furnace leakage as well as to analyze the oxidation homogeneity across a horizontal oxidation furnace. For comparison, capacitance-voltage measurements are conducted to characterize the oxide properties. It is found that any type of furnace leakage, which induces fixed oxide charges as well as interface states, has a heavy impact on the measured effective lifetime, especially on the shape of generation rate dependent lifetime curves. Furthermore, a distinct lifetime decrease towards the tube door of the oxidation furnace could be observed. The latter is even detectable in an ideal oxidation process, generating high quality oxides. Besides plain equipment characterization, the presented approach is suitable to optimize the oxidation process itself regarding different parameters like temperature, gas flow, pressure, or process time.


Sign in / Sign up

Export Citation Format

Share Document