Biodegradable Mg Strengthened Poly-Lactic Acid Composite through Interfacial Properties

2017 ◽  
Vol 900 ◽  
pp. 7-11
Author(s):  
Muhammad Shoaib Butt ◽  
Jing Bai ◽  
Feng Xue

High-strength magnesium alloy (AZ31) reinforced poly-lactic acid (PLA) composite rods for potential application of bone fracture fixation prepared by plastic injection process on Mg rod.Thecomposities possess improved the interfacial bonding between poly-lactic acid and Mg rod due to the micro-anchoring which lead to better mechanical performance in Simulated body fluid solution.The present results indicated that this new PLA-clad Mg composite rods show good potential for biomedical applications.

2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


2005 ◽  
Vol 284-286 ◽  
pp. 489-492 ◽  
Author(s):  
Hirotaka Maeda ◽  
Toshihiro Kasuga ◽  
Masayuki Nogami

Hydroxycarbonate apatite (HCA), which formed on a poly(lactic acid) (PLA) composite membrane containing vaterite or calcium chloride after soaking in simulated body fluid, was examined to clarify the importance of the ceramic phases in the composites. FT-IR spectra showed that the ratio of CO3/PO4 in the infrared adsorption bands of HCA formed on the PLA composite containing vaterite was much larger than that of HCA formed on the PLA composite containing calcium chloride. Substitution of carbonate ion in hydroxyapatite is believed to be strongly influenced by ceramic phases in the composites. The zeta potentials of HCA formed on the PLA composite containing vaterite or calcium chloride was -6 mV or -17 mV, respectively. The zeta potential may be influenced by the amount of carbonate ion in hydroxyapatite.


2019 ◽  
Vol 1 (12) ◽  
pp. 3354-3365
Author(s):  
Neha Mulchandani ◽  
Arvind Gupta ◽  
Kazunari Masutani ◽  
Sachin Kumar ◽  
Shinichi Sakurai ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


2016 ◽  
Vol 107 ◽  
pp. 47-59 ◽  
Author(s):  
P. Saini ◽  
M. Arora ◽  
M.N.V. Ravi Kumar

2010 ◽  
Vol 638-642 ◽  
pp. 670-674
Author(s):  
Akiko Obata ◽  
Takashi Wakita ◽  
Yoshio Ota ◽  
Toshihiro Kasuga

Microfiber meshes releasing a trace amount of silicon species were prepared by electrospinning silicon-doped vaterite (SiV) and poly(lactic acid) (PLA) hybrids for application to membranes for guided bone regeneration (GBR). A trace amount of silicon-species has been reported to enhance the mineralization and bone-forming abilities of osteogenic cells. The microfiber meshes prepared by electrospinning are regarded to be a useful candidate for the GBR membrane, because they have adequate flexibility and porosity for it. In this study, hydroxyapatite (HA)-forming abilities in simulated body fluid, silicon-releasabilities, compatibility with osteoblast-like cells of the prepared microfiber meshes were examined. The meshes were completely coated with HA after soaking in simulated body fluid for 1 day. The meshes coated with HA released 0.2 -0.7 mg/L of silicon species in a cell culture medium for 7 days. The cells elongated on the microfibers of the meshes and some of them entered the mesh after 1 day-culturing. The meshes are expected to provide an excellent substrate for bone regeneration and enhance bone-forming ability of the cells.


Sign in / Sign up

Export Citation Format

Share Document