A Comparative Study of Delayed Hydride Cracking in Zr-3.5Sn-0.8Nb-0.8Mo and Zr-2.5Nb

2018 ◽  
Vol 917 ◽  
pp. 207-211
Author(s):  
Qiang Fang

A new test procedure for measuring the resistance to delayed hydride cracking was developed. The critical stress intensity factors for delayed hydride cracking and the crack growth velocities of Zr-3.5Sn-0.8Nb-0.8Mo alloy with different heat treatments were evaluated and compared with Zr-2.5Nb. It was found that Delayed Hydride Cracking (DHC) crack growth velocity increases with the alloy strength, and the critical stress intensity factor is independent of heat treatment history or alloy composition.

2005 ◽  
Vol 73 (5) ◽  
pp. 714-722 ◽  
Author(s):  
I. Chasiotis ◽  
S. W. Cho ◽  
K. Jonnalagadda

The fracture behavior of polycrystalline silicon in the presence of atomically sharp cracks is important in the determination of the mechanical reliability of microelectromechanical system (MEMS) components. The mode-I critical stress intensity factor and crack tip displacements in the vicinity of atomically sharp edge cracks in polycrystalline silicon MEMS scale specimens were measured via an in situ atomic force microscopy/digital image correlation method. The effective (macroscopic) mode-I critical stress intensity factor for specimens from different fabrication runs was 1.00±0.1MPa√m, where 0.1MPa√m is the standard deviation that was attributed to local cleavage anisotropy and grain boundary effects. The experimental near crack tip displacements were in good agreement with the linearly elastic fracture mechanics solution, which supports K dominance in polysilicon at the scale of a few microns. The mechanical characterization method implemented in this work allowed for direct experimental evidence of incremental (subcritical) crack growth in polycrystalline silicon that occurred with crack increments of 1-2μm. The variation in experimental effective critical stress intensity factors and the incremental crack growth in brittle polysilicon were attributed to local cleavage anisotropy in individual silicon grains where the crack tip resided and whose fracture characteristics controlled the overall fracture process resulting in different local and macroscopic stress intensity factors.


2004 ◽  
Vol 854 ◽  
Author(s):  
I. Chasiotis ◽  
S.W. Cho ◽  
K. Jonnalagadda

ABSTRACTDirect measurements of Mode-I critical stress intensity factor and crack tip displacements were conducted in the vicinity of atomically sharp edge cracks in polycrystalline silicon MEMS using our in situ Atomic Force Microscopy (AFM)/Digital Image Correlation (DIC) method. The average Mode-I critical stress intensity factor for various fabrication runs was 1.00 ± 0.1 MPa√m. The experimental crack tip displacement fields were in very good agreement with linear elastic fracture mechanics solutions. By means of an AFM, direct experimental evidence of incremental crack growth in polycrystalline silicon was obtained for the first time via spatially resolved crack growth measurements. The incremental crack growth in brittle polysilicon is attributed to its locally anisotropic polycrystalline structure which also results in different local and macroscopic (apparent) stress intensity factors.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Grzegorz Ludwik Golewski ◽  
Damian Marek Gil

This paper presents the results of the fracture toughness of concretes containing two mineral additives. During the tests, the method of loading the specimens according to Mode I fracture was used. The research included an evaluation of mechanical parameters of concrete containing noncondensed silica fume (SF) in an amount of 10% and siliceous fly ash (FA) in the following amounts: 0%, 10% and 20%. The experiments were carried out on mature specimens, i.e., after 28 days of curing and specimens at an early age, i.e., after 3 and 7 days of curing. In the course of experiments, the effect of adding SF to the value of the critical stress intensity factor—KIcS in FA concretes in different periods of curing were evaluated. In addition, the basic strength parameters of concrete composites, i.e., compressive strength—fcm and splitting tensile strength—fctm, were measured. A novelty in the presented research is the evaluation of the fracture toughness of concretes with two mineral additives, assessed at an early age. During the tests, the structures of all composites and the nature of macroscopic crack propagation were also assessed. A modern and useful digital image correlation (DIC) technique was used to assess macroscopic cracks. Based on the conducted research, it was found the application of SF to FA concretes contributes to a significant increase in the fracture toughness of these materials at an early age. Moreover, on the basis of the obtained test results, it was found that the values of the critical stress intensity factor of analyzed concretes were convergent qualitatively with their strength parameters. It also has been demonstrated that in the first 28 days of concrete curing, the preferred solution is to replace cement with SF in the amount of 10% or to use a cement binder substitution with a combination of additives in proportions 10% SF + 10% FA. On the other hand, the composition of mineral additives in proportions 10% SF + 20% FA has a negative effect on the fracture mechanics parameters of concretes at an early age. Based on the analysis of the results of microstructural tests and the evaluation of the propagation of macroscopic cracks, it was established that along with the substitution of the cement binder with the combination of mineral additives, the composition of the cement matrix in these composites changes, which implies a different, i.e., quasi-plastic, behavior in the process of damage and destruction of the material.


2019 ◽  
Vol 9 (4) ◽  
pp. 805 ◽  
Author(s):  
Chung-Ho Huang ◽  
Chung-Hao Wu ◽  
Shu-Ken Lin ◽  
Tsong Yen

The effects of particle size of ground granulated blast furnace slag (GGBS) on the fracture energy, critical stress intensity, and strength of concrete are experimentally studied. Three fineness levels of GGBS of 4000, 5000, 6000 cm2/g were used. In addition to the control mixture without slag, two slag replacement levels of 20% and 40% by weight of the cementitious material were selected for preparing the concrete mixtures. The control mixture was designed to have a target compressive strength at 28 days of 62 MPa, while the water to cementitious material ratio was selected as 0.35 for all mixtures. Test results indicate that using finer slag in concrete may improve the filling effect and the reactivity of slag, resulting in a larger strength enhancement. The compressive strength of slag concrete was found to increase in conjunction with the fineness level of the slag presented in the mixture. Use of finer slag presents a beneficial effect on the fracture energy (GF) of concrete, even at an early age, and attains a higher increment of GF at later age (56 days). This implicates that the finer slag can have a unique effect on the enhancement of the fracture resistance of concrete. The test results of the critical stress intensity factor (KSIC) of the slag concretes have a similar tendency as that of the fracture energy, indicating that the finer slag may present an increase in the fracture toughness of concrete.


2018 ◽  
Vol 32 (22) ◽  
pp. 1850241 ◽  
Author(s):  
Minh-Quy Le

Molecular dynamics simulations with Tersoff potential were performed to study the fracture properties of monolayer germanene at 300 K. The two-dimensional (2D) Young’s modulus, 2D tensile strength and axial strain at the tensile strength of pristine monolayer germanene are about 36.0 and 37.5 N/m; 5.1 and 4.6 N/m; 21.4 and 15.9%, in the zigzag and armchair directions, respectively. Griffith theory was applied to compute the critical stress intensity factor. Compared to monolayer graphene, the critical stress intensity factor of monolayer germanene is much smaller. Fracture pattern and effects of the initial crack length on the fracture properties are also studied. Results are useful for future design and applications of this 2D material.


Sign in / Sign up

Export Citation Format

Share Document