Research on 3D Printing Forming Technology for Processing Tablet Material

2018 ◽  
Vol 928 ◽  
pp. 168-174 ◽  
Author(s):  
Ming Yu Yang ◽  
Zheng Hong Zhu

The purpose of this paper is to explore the potential of tablet manufacturing technology combined with 3D printing technology. The acetaminophen raw materials used for 3D printing are formulated in a clean environment according to the actual amount. And homemade material mixed-type three-dimensional printer is used to print double-layer acetaminophen tablets. In this paper, the factors influencing the quality of the tablet were explored by orthogonal experiments, and the optimal parameters were obtained. In order to determine whether the tablet meets the quality requirements, the hardness, friability and dissolution profiles of the 3D printing tablets were determined by the test instrument.

Author(s):  
Celalettin Değerli ◽  
Sedef Nehir El

Three dimensional (3D) printing technology, have been quite popular in recent years. It came out first in the area of material production, but now, it has been applied on the other possible fields like food production. In this review, historical period of 3D printing, 3D printer types and working principles, studies on 3D food printing until today and the raw materials used in this studies were investigated. Studies on food printing was also categorised according to food types. Also, the impacts of 3D printing technology on food sector from the point of producer and consumer and future needs were discussed.


2021 ◽  
Vol 11 (10) ◽  
pp. 4392
Author(s):  
Apolka Ujj ◽  
Kinga Percsi ◽  
Andras Beres ◽  
Laszlo Aleksza ◽  
Fernanda Ramos Diaz ◽  
...  

The use and quality analysis of household compost have become very important issues in recent years due to the increasing interest in local food production and safe, self-produced food. The phenomenon was further exacerbated by the COVID-19 pandemic quarantine period, which gave new impetus to the growth of small home gardens. However, the knowledge associated with making high-quality compost is often lacking in home gardeners. Therefore, the objective of this research was to find answers to the following questions: can the quality of backyard compost be considered safe in terms of toxicity and nutrient content? Can weed seed dispersion affect the usability of backyard compost? In general, can the circulation of organic matter be increased with the spread of home composting? In this study, 16 different house composts were analysed for stability, weed seed contamination, toxic elements, and nutrient content using analysis of variance. The results of the research showed that the quality properties of the composts (including their weed seed dispersion effect) were greatly influenced by the different techniques and raw materials used. The toxicity levels, as well as the content of macro and microelements, were within the parameters of safe-quality compost. The specific macronutrient (Ca, Mg) and micronutrient (Fe, Mn) contents of the tested composts have a similar and, in some cases, more favorable nutrient supply capacity in crop production than the frequently-used cow manure-based composts. With a plan of basic education on composting, there is potential to encourage farmyard composting.


2018 ◽  
Vol 222 ◽  
pp. 01013 ◽  
Author(s):  
Katarzyna Pacewicz ◽  
Anna Sobotka ◽  
Łukasz Gołek

Three dimensional printing is a promising new technology to erect construction objects. Around the world in every moment a new prototypes constructions are made by using this method. Three dimensional printing is taken into account as technology which can be used to print constructions in automated way on the Moon or Mars. The raw materials, which can be used with three dimensional printing have to fulfil basic requirements for those which are used in construction. That means that components of printing mortars are made from ingredients easily accessible in area nearby construction site and can be reusable. The cost of printing building objects due to that requirements is comparable to costs of traditional building, which are currently available. However additive techniques of printing needs a dedicated mortars for printer supplying. Characteristic for such mortars is: setting time, compressive strength, followability in the printing system, shape stability of every printed layer, controlling the hydration rate to ensure bonding with the subsequent layer, reusable capabilities, easily accessible raw materials, cost of such mixtures shouldn’t be too high in order to keep 3D printing competitive for traditional ways of building, mortar components should be recyclable and printing process should not influence negatively on an environment and people. All properties of printing mortars are determined by the device for additive application method. In this paper review of available materials used for three dimensional printing technology at construction site is presented. Presented materials were analysed in terms of requirements for building materials technology. Due to the lack of detailed information’s in available literature, regarding to the properties of raw materials, the results of this analysis may be used in the designing of new concrete mixtures for the use in three-dimensional printing technology for construction.


2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


2015 ◽  
Vol 137 (08) ◽  
pp. 42-45
Author(s):  
Mike Vasquez

This article reviews the challenges for companies while adopting three-dimensional (3D) printing technology. A big challenge for companies figuring out whether they need to invest in 3-D printing is the different types of printing systems available in the market. At a high level, there are seven different families of 3-D printing processes. Each of the seven technologies is differentiated by the materials used and how the materials are fused together to create three-dimensional objects. Another barrier is that most companies have not yet found it viable to put the processes in place to incorporate the change in design, engineering, and manufacturing production that is required. Not only capital funds are needed to purchase machines, but to effectively use the technology to create a sellable product, one also needs to have a targeted product line and clear vision of the ways that 3-D printing can help lower material costs, save energy, and simplify manufacturing and assembly.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2909 ◽  
Author(s):  
Jiangping Yuan ◽  
Jieni Tian ◽  
Chen Chen ◽  
Guangxue Chen

Color three-dimensional (3D) printing is an advanced 3D printing technique for reproducing colorful 3D objects, but it still has color accuracy issues. Plastic-based color 3D printing is a common color 3D printing process, and most factors affecting its color reproduction quality have been studied from printing materials to parameters in the fixed consecutive layers. In this work, and combined with variable stair thickness, the colored layer sequence in sliced layers of a specific 3D color test chart is deliberately changed to test the effects of colored layer features on its final color reproduction quality. Meanwhile, the colorimetric measurement and image acquisition of printed 3D color test charts are both achieved under standard conditions. Results clearly show that the chromatic aberration values and mean structural similarity (MSSIM) values of color samples have a significant correlation with the colored stair thickness, but both did not display a linear relationship. The correlation trends between colored layer sequence and the above two indexes are more localized to the colored stair thickness. Combined with color structural similarity (SSIM) maps analysis, a comprehensive discussion between colored layer features and color reproduction quality of color 3D printing is presented, providing key insights for developing further accurate numerical models.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 144
Author(s):  
Guillermo Sotorrío Ortega ◽  
Javier Alonso Madrid ◽  
Nils O. E. Olsson ◽  
José Antonio Tenorio Ríos

The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.


2018 ◽  
Vol 931 ◽  
pp. 537-543
Author(s):  
Elizaveta O. Lotoshnikova ◽  
Leonid M. Usepyan ◽  
Valeriya N. Telegina ◽  
Elzara O. Tsybenko

The article presents a technique for assigning the composition of the agglutinant sand, which is based on the calculation and experimental approach to determining the composition, taking into account the quality of raw materials used and the requirements for the properties of concrete products produced. The obtained results served as the basis for the practical implementation of the proposed technological method of increasing the small-sized products durability made of fine-grain concrete.


2016 ◽  
Vol 697 ◽  
pp. 414-418
Author(s):  
Wei Wan ◽  
Jian Yang ◽  
Yong Bao Feng ◽  
Tai Qiu

Highly porous silica ceramics were prepared by in-situ gelation of an aqueous suspension with well dispersed silica particles and N’N-dimethylacrylamide (DMAA) monomer, followed by lyophilization and pressureless sintering. The gelcasting process was imparted by polymerization of DMAA. The silica raw materials used in this experiment are the dusts collected from the exhaust fumes of silicon industry. The as-obtained porous silica ceramics had three-dimensional and hierarchical pore structure and the porosity ranged from 75 to 88 % as the sintering temperature varied from 850 to 1050 °C. In addition, the porous silica ceramics appeared to have strong mechanical strength. Compressive strength of the porous silica ceramics was as high as 3.2 MPa even when the porosity was nearly 80%. The gelcasting-lyophilization method was proved to be a novel and promising route for the preparation of highly porous and mechanically strong materials.


Sign in / Sign up

Export Citation Format

Share Document