Investigation of the Influence of Fillers of Various Nature on the Properties of Polyether Sulfone and Determination of the Possibility of Using Composites on their Basis in 3D-Printing

2018 ◽  
Vol 935 ◽  
pp. 11-14
Author(s):  
Azamat L. Slonov ◽  
Azamat A. Zhansitov ◽  
Ismel V. Musov ◽  
Elina V. Khakyasheva ◽  
L.Kh. Kuchmenova ◽  
...  

The results of the studies of the effect of excipients of mineral and organic origin on the mechanical properties of polyether sulfone based on 4,4'-dihydroxydiphenyl and 4,4'-dichlordiphenylsulfone are adduced. It has been shown that the introduction of hard fillers is accompanied by the increased modulus and reduced ductility of the polymer matrix, the intensity of these effects depends on the concentration, shape and particle size additives. It was revealed that the composites with talc and discrete carbon fibers were characterized by higher mechanical properties. Their test as materials for FDM 3D printing method shows the highest suitability composites with talc for this technology.

2019 ◽  
Vol 254 ◽  
pp. 01018
Author(s):  
František Bárnik ◽  
Milan Vaško ◽  
Milan Sága ◽  
Marián Handrik ◽  
Alžbeta Sapietová

By 3D printing it is possible to create different structures with different fiber-laying directions. These structures can be created depending on the type of 3D printer and its software. The Mark Two printer allows printing Onyx, a material based on nylon in combination with microcarbon fibers. Onyx can be used alone or reinforced with kevlar, glass or carbon fibers. This article deals with 3D printing and evaluation of mechanical properties of printed samples.


2020 ◽  
Vol 869 ◽  
pp. 488-493
Author(s):  
Aues A. Beev ◽  
Svetlana Yu. Khashirova ◽  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Azamat Zhansitov ◽  
...  

The article presents the results of sizing of discrete carbon fibers with various substances and their effect on the properties of polyetherimide composites. As sizing agents, 1,3-diaminobenzene, 4,4'-dihydroxy-2,2-diphenylpropane, polyetherimide and oligoetherether sulfone were used. The study of physical and mechanical properties showed that all the substances used increase the properties of the carbon-filled composite based on polyetherimide. The highest mechanical properties are demonstrated by a composite containing carbon fibers treated with 1,3-diaminobenzene, which indicates improved compatibility of the filler and the polymer matrix and enhanced intermolecular interactions.


2020 ◽  
Vol 20 (2) ◽  
pp. 190-194
Author(s):  
Josef Sedlak ◽  
Josef Chladil ◽  
Martin Cerny ◽  
Ales Polzer ◽  
Matus Varhanik ◽  
...  

2019 ◽  
pp. 160-169
Author(s):  
D. A. Melnikov ◽  
A. P. Petrova ◽  
L. A. Dementieva ◽  
A. V. Ilichev

The paper considers methods for manufacturing polymer-matrix samples for the determination of mechanical properties outlining the basic approach to the development of modes for pouring and curing of polymer blocks. Samples were made of cured adhesive binders VSK-50, VSK-14-2m, VSK-14-2mR, VSK-14-2mRm, and tests were carried out to determine the following characteristics: tensile and flexural strength, elongation, tensile modulus when stretching and bending.


2021 ◽  
Vol 899 ◽  
pp. 309-316
Author(s):  
Ismel V. Musov ◽  
Azamat L. Slonov ◽  
Azamat A. Zhansitov ◽  
Zhanna I. Kurdanova ◽  
Svetlana Yu. Khashirova

The influence of the multiplicity of extrusion and melt viscosity on the residual length of discrete carbon fibers in composites based on polyetherimide for 3D-printing is estimated. A technique for measuring the residual length of carbon fibers in composites is proposed. The residual length of carbon fibers in composites containing from 10 to 40% fibrous filler with different initial linear dimensions has been determined. It was found that the addition of a melt viscosity modifier to a carbon-filled composite helps to maintain the linear dimensions of the fiber filler particles, thereby increasing the physical and mechanical properties of the material.


2021 ◽  
Vol 1046 ◽  
pp. 125-132
Author(s):  
Paul Eric C. Maglalang ◽  
Blessie A. Basilia ◽  
Araceli Magsino Monsada

It is quite amazing that the use of 3D printing techniques, especially the Fused Deposition Modelling (FDM) has delivered such significance in terms of cost reduction, time saver features where a different variety of thermoplastic and composite materials (Biodegradable and Non-biodegradable) are well developed. Different sectors have continually developed natural organic materials that are also both structurally composite in nature. Similarly, the use of different fibers that are abundantly accessible and considered as renewable resources which can be optionally combined with other biodegradable materials is a great challenge through the use of the FDM printing method. The study aims to determine the effect of different particle size and raster angle at a certain fiber concentration which could affect the mechanical properties of the composite by developing a printable composite filament made of Polylactic Acid (PLA) and Coco Coir materials using a filament maker and FDM printer. The composite filament was fabricated and optimized using a twin-screw extruder and 3D Devo Filament maker. 3D printing of samples for mechanical testing was conducted using three (3) raster angles (45o, 60o, and 75o) and various particle sizes of coco coir fiber reinforcement in the PLA matrix. Results showed that the < 74μm particle size of the coco-coir exhibited a 24% and 175% increase in tensile strength and izod impact strength compared to the pure PLA at 60o and 75o raster angles, respectively. Likewise, the reinforcement of <149μm particle size coco coir at 45o raster angle contributes to an increase of 4.8% flexural and 176% compressive strength compared to pure PLA. The study concludes that there is an improvement in the mechanical properties of the PLA-Coco Coir composite at a certain particle size and raster angle in 3D printing.


2020 ◽  
Vol 10 (13) ◽  
pp. 4680
Author(s):  
Haiguang Zhang ◽  
Wenguang Zhong ◽  
Qingxi Hu ◽  
Mohamed Aburaia ◽  
Joamin Gonzalez-Gutierrez ◽  
...  

Additive manufacturing has been applied in many fields, but its layer-by-layer fabrication process leads to a weak inter-layer bond strength of printed parts, so it cannot meet the higher requirements for mechanical properties of the industry. At present, many researchers are studying the printing path planning method to improve the mechanical properties of printed parts. This paper proposes a method to plan the printing path according to the actual stress of pipe parts, and introduces the realization process of an algorithm in detail, and obtains the printing control G-code. Additionally, a 5-axis material extrusion platform was built to realize the printing of polylactic acid pipes with plane and space skeleton curves, respectively, which verified the feasibility and applicability of the method and the correctness of the planning path with standard material extrusion filaments. Finally, the tensile and bending experiments prove that axial printing enhances the mechanical properties of pipe parts.


2013 ◽  
Vol 795 ◽  
pp. 124-127 ◽  
Author(s):  
Nur Farhana Hayazi ◽  
Yu Wang ◽  
Mohd Noor Mazlee ◽  
Sammy Lap Ip Chan

This work investigates the dehydrogenation of TiH2 powder during isothermal heating at 600°C using the static x-ray scans of high temperature x-ray diffraction (XRD). As-received TiH2 powder with a particle size of 5 μm and purity of 99.1% was used for this measurement. With increasing temperature, phase transformations occurred because of dehydrogenation and it happened very fast. It was found that during the phase transformation of TiH2 to titanium, some transitional phases observed and occurred. This finding confirmed the in-situ determination of TiH2 powder dehydrogenation by using Rietveld Refinement Method from our previous research. This study is useful for the fabrication of titanium-based composites and titanium alloys from TiH2 powder because the different phases in TiH2 will affect the final mechanical properties in titanium.


2021 ◽  
Author(s):  
Sachini Perera ◽  
Alejandra Durand-Silva ◽  
Ashele Remy ◽  
Shashini Diwakara ◽  
Ronald Smaldone

Vat photopolymerization is a versatile 3D printing method that produces parts using polymeric materials with uniform mechanical properties, high quality surface finish and high-resolution features. However, it is challenging to make composite materials with vat photopolymerization mainly due to the imperfect filler dispersion in the photo resin. Herein, we describe a methodology to incorporate aramid nanofibers (ANFs) into a 3D printable photoresin as a dispersion, followed by a solvent exchange process that limits anisotropic shrinkage and cracking of the printed polymer. By incorporating 0.60 wt.% of ANFs, both the tensile strength and toughness increased by 264 % and 219 % respectively, while the Young’s modulus had a 406 % increase compared to the control photoresin.


Sign in / Sign up

Export Citation Format

Share Document