Modern Building Materials Using Waste from the Dismantling of Buildings and Structures

2019 ◽  
Vol 945 ◽  
pp. 1016-1023
Author(s):  
L.L. Maslennikova ◽  
N.A. Babak ◽  
I.A. Naginskii

In this article the possibility of using construction waste (including waste of dismantling of buildings) when receiving building ceramics, heat-resistant materials based on liquid glass and materials based on natural hardening cement binder is considered. The purpose of study was development of building materials compositions made with using of secondary crushed stone screening HYPERLINK "https://www.multitran.ru/c/m.exe?t=2400068_1_2&s1=%EE%F2%F1%E5%E2" of dismantling of buildings for various purposes, which would suit all state standards. Also these materials would have some improved physical-mechanical characteristics and would be more eco-friendly. Optimum compositions of materials made with use of building mineral waste and physical-mechanical characteristics of received materials are given. For research of waste structure and synthesizable materials structure X-ray phase, differential-thermal methods of analysis and grain size measurements were used. The geological-ecological evaluation of secondary crushed stone screening use efficiency in developed technologies is given.

2014 ◽  
Vol 1022 ◽  
pp. 3-6 ◽  
Author(s):  
Valentina Ivanovna Loganina ◽  
Ludmila V. Makarova ◽  
Roman V. Tarasov ◽  
Ch.V. Zhegera

The effectiveness of the use of the synthesizable aluminosilicates in cement composites as the modifying additive, regulating the structurization and increasing the operational properties of cement systems is investigated. Nature of change of the index рН of a liquid phase of cement systems with the use of the synthesized aluminosilicates is studied. The information about a thermal emission kinetics at hardening cement composites are provided. One of the priorities of the modern building materials science is the development of efficient building materials with the high operational properties. The solution of this problem base on purposeful formation of the material structure as heterogeneous, multiphase system of the complex hierarchy. One of the directions of properties management of this system is the modification of their structure by nanosized particles [1, 2, 3].


2006 ◽  
Vol 302-303 ◽  
pp. 269-274
Author(s):  
You Zhi Chen ◽  
Fang Xian Li ◽  
Bing Bo Xu

Aerated concrete is a new type of building materials. Clayish crushed stones are regarded as solid waste disposals in China. This paper reports the research outcomes of an experimental study on using clayish crushed stone for the production of aerated concretes of B05 and B06 grade. Hydro-thermal synthesis reaction, mixing proportions, gas-forming and their influences on the concrete performance are investigated. Proper mixing proportions and some important technical parameters are proposed for material design. The microstructure of aerated concrete made with clayish crush stone is analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the hydration products of clayish aerated concrete are composed of poor crystallized C-S-H (B), blade- and needle-shaped Tobermorite and a small amount of granular Hydrogarnet. A homogeneous and densified microstructure was obtained in the aerated concretes with negligible amount of clay after the hydro-thermal reaction in the mixture.


2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


2021 ◽  
Vol 410 ◽  
pp. 778-783
Author(s):  
Pavel V. Matyukhin ◽  
Daler I. Mirzoev

The paper presents the results of ferriferous wastes modification process research carried on the basis of JCS “Leninobad rare metals Plant” located in the Republic of Tajikistan. The wastes for the study were taken from the western tailing. The article presents the justification of the chosen wastes as a filling material in the development of new radiation protective composite building materials. The data on the initial ferriferous chemical composition of the tailing wastes and the chemical composition of the material that passed the enrichment process is presented. The study contains microphotos of ferriferous haematite raw material particles surface before and after completing the modifying process. The paper presents and describes the study of X-ray phase analysis diffractograms of enriched iron-containing wastes before and after the modification process. The current research proves that the enrichment ferriferous wastes particles modification process is possible and as a result it can be used as a filling for the development of new kinds of radioprotective composite materials.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5002
Author(s):  
Željka Soldin ◽  
Boris-Marko Kukovec ◽  
Dubravka Matković-Čalogović ◽  
Zora Popović

Three new mercury(II) coordination compounds, {[HgCl(pic)]}n (1), [HgCl(pic)(picH)] (2), and [HgBr(pic)(picH)] (3) (picH = pyridine-2-carboxylic acid, picolinic acid) were prepared by reactions of the corresponding mercury(II) halides and picolinic acid in an aqueous (1) or alcohol–methanol or ethanol (2 and 3) solutions. Two different types of coordination compounds were obtained depending on the solvent used. The crystal structures were determined by the single-crystal X-ray structural analysis. Compound 1 is a one-dimensional (1-D) coordination polymer with mercury(II) ions bridged by chelating and bridging N,O,O′-picolinate ions. Each mercury(II) ion is four-coordinated with a bidentate picolinate ion, a carboxylate O atom from the symmetry-related picolinate ion and with a chloride ion; the resulting coordination environment can be described as a highly distorted tetrahedron. Compounds 2 and 3 are isostructural mononuclear coordination compounds, each mercury(II) ion being coordinated with the respective halide ion, N,O-bidentate picolinate ion, and N,O-bidentate picolinic acid in a highly distorted square-pyramidal coordination environment. Compounds 1–3 were characterized by IR spectroscopy, PXRD, and thermal methods (TGA/DSC) in the solid state and by 1H and 13C NMR spectroscopy in the DMSO solution.


2019 ◽  
Vol 16 (5) ◽  
pp. 618-634
Author(s):  
I. S. Pulyaev ◽  
S. M. Pulyaev

Introduction. The paper deals with the issues related to the implementation of the “quality” concept in the construction of reinforced concrete transport facilities linked with the scientific support during design and construction. Nowadays this problem particularly relevant in the context of the modern construction solutions, combined with the need to obtain the required properties of concrete structures and ensure the economic feasibility of construction. The aim of the research is to generalize and systematize the main methods and techniques of concrete works, which minimize the defects and cracks while the construction of transport infrastructure.Materials and methods. On the example of different technologies used in the Russian construction over last 10 years, the authors demonstrated the developed methods of obtaining high quality concrete products taking into account tested and proved modern building materials.Results. The results of the research formed the basis of the projects, technological regulations for the production, specifications and standards of organizations, guidelines. Moreover, the results also allowed implementing the concept of “quality” in transport construction based on obtaining defect-free reinforced concrete structures with specified properties, taking into account the use of modern building materials.Discussion and conclusions. The research allows carrying out construction of various massiveness and extent. The obtained results form the basis of construction technology of other industrial and civil construction objects with reinforced concrete application. The paper is interesting and useful for specialists in providing defect-free construction of reinforced concrete building structures, for engineering and technical staff. The authors dedicate the research to the memory of Professor and Doctor of Technical Sciences, A.R. Solovyanchik (1938-2019).


2018 ◽  
Vol 22 ◽  
pp. 372-379 ◽  
Author(s):  
Raluca Fernea ◽  
Iacob Florea ◽  
Daniela Lucia Manea ◽  
Petru Pășcuță ◽  
Daniela Roxana Tămaș-Gavrea

2009 ◽  
Vol 64 (4) ◽  
pp. 403-408 ◽  
Author(s):  
Shyamapada Shit ◽  
Joy Chakraborty ◽  
Brajagopal Samanta ◽  
Georgina M. Rosair ◽  
Samiran Mitra

A new centrosymmetric trinuclear Zn(II) complex [Zn3L2(CH3COO)4] (1) has been synthesized by the reaction of Zn(CH3COO)2 · 2H2O with a tridentate N,N,O-donor Schiff base ligand HL [C5H4NC(CH3)=NC6H4(OH)] and systematically characterized by elemental analysis, FT-IR, UV/Vis and thermal methods. Single crystal X-ray structure analysis reveals that three Zn(II) centers are in two different coordination environments. Two terminal Zn(II) centers adopt a distorted squarepyramidal geometry leaving the central Zn(II) in a distorted octahedral environment. Two adjacent metal centers are connected through single μ2-phenolato as well as double μ-acetato-O,O´ syn-syn bridges. Fluorescence properties of the complex as compared to the ligand indicate that the former can serve as a potential photoactive material.


Sign in / Sign up

Export Citation Format

Share Document