Effective Elements of Building Structures from Pipe Concrete

2019 ◽  
Vol 945 ◽  
pp. 80-84
Author(s):  
O.E. Sysoev ◽  
A.Y. Dobryshkin ◽  
Ye.O. Sysoyev

The article is devoted to the investigation of pipe-concrete prestressed structural elements with high efficiency. This is due to a more complete use of the strength properties of structural materials in the pipe-concrete beam. The article presents various methods for calculating pipe-concrete elements. The design of a concrete tube with a prestressed element using high-strength concrete is presented. The results of calculations of various designs are shown and the cross-sections of beams for perception of the same bending load are selected. A comparison is made between the consumption of beam materials of various designs. The effectiveness of the use of pipe-concrete elements for receiving bending loads made of high-strength concrete with prestressed reinforcement is shown in comparison with the construction of beams of traditional high-strength concrete, high-strength concrete pipe-concrete with no prestressing of reinforcement and metal beam, mass of the element, consumption of metal and concrete.

2000 ◽  
Vol 6 ◽  
pp. 855-866 ◽  
Author(s):  
T. Morita ◽  
A. Nishida ◽  
N. Yarnazaki ◽  
U. Schneider ◽  
U. Diederichs

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Iakov Iskhakov ◽  
Yuri Ribakov

As known, high-strength compressed concrete elements have brittle behavior, and elastic-plastic deformations do not appear practically up to their ultimate limit state (ULS). This problem is solved in modern practice by adding fibers that allow development of nonlinear deformations in such elements. As a rule, are applied steel fibers that proved high efficiency and contribute ductile behavior of compressed high-strength concrete (HSC) elements as well as the desired effect at long-term loading (for other types of fibers, the second problem is still not enough investigated). However, accurate prediction of the ULS for abovementioned compression elements is still very important and current. With this aim, it is proposed to use transverse deformations in HSC to analyze compression elements' behavior at stages close to ultimate. It is shown that, until the appearance of nonlinear transverse deformations (cracks formation), these deformations are about 5-6 times lower than the longitudinal ones. When cracks appear, the tensile stress-strain relationship in the transverse direction becomes nonlinear. This fact enables to predict that the longitudinal deformations approach the ultimate value. Laboratory tests were carried out on 21 cylindrical HSC specimens with various steel fibers content (0, 20, 30, 40, and 60 kg/m3). As a result, dependences of transverse deformations on longitudinal ones were obtained. These dependences previously proposed by the authors’ concept of the structural phenomenon allow proper estimation of the compressed HSC state up to failure. Good agreement between experimental and theoretical results forms a basis for further development of modern steel fibered HSC theory and first of all nonlinear behavior of HSC.


2009 ◽  
Vol 10 (3) ◽  
pp. 109-116
Author(s):  
L. da Conceição Domingues Shehata ◽  
A. Lopes de Paula ◽  
I. Abd El Malik Shehata

Sign in / Sign up

Export Citation Format

Share Document