scholarly journals Strength Properties of High-Strength Concrete for Slurry Wall Under Undrained Tri-axial Loading.

1997 ◽  
pp. 105-117
Author(s):  
Shigeru Aoki ◽  
Norihiko Miura ◽  
Takashi Miura
2014 ◽  
Vol 629-630 ◽  
pp. 273-278 ◽  
Author(s):  
Jian Zhuang Xiao ◽  
Qing Hai Xie ◽  
Yi Zhao Hou ◽  
Zhi Wei Li

A reliability analysis was conducted on high-strength concrete (HSC) columns during a fire. The influences of fire’s randomness and explosive spalling of concrete were investigated. The fire resistance for axial loading capacity of HSC columns was in terms of steel yield strength and concrete compressive strength with considering the effect of elevated temperatures. The load random variables included dead load and sustained live load. The JC method was applied to calculate the reliability index of the fire resistance of axially loaded HSC columns. It was found that the randomness of fire and explosive spalling of concrete had a significant influence on reliability of HSC columns.


2019 ◽  
Vol 945 ◽  
pp. 80-84
Author(s):  
O.E. Sysoev ◽  
A.Y. Dobryshkin ◽  
Ye.O. Sysoyev

The article is devoted to the investigation of pipe-concrete prestressed structural elements with high efficiency. This is due to a more complete use of the strength properties of structural materials in the pipe-concrete beam. The article presents various methods for calculating pipe-concrete elements. The design of a concrete tube with a prestressed element using high-strength concrete is presented. The results of calculations of various designs are shown and the cross-sections of beams for perception of the same bending load are selected. A comparison is made between the consumption of beam materials of various designs. The effectiveness of the use of pipe-concrete elements for receiving bending loads made of high-strength concrete with prestressed reinforcement is shown in comparison with the construction of beams of traditional high-strength concrete, high-strength concrete pipe-concrete with no prestressing of reinforcement and metal beam, mass of the element, consumption of metal and concrete.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
In-Hwan Yang ◽  
Jihun Park ◽  
Nhien Dinh Le ◽  
Sanghwa Jung

Most previous studies on the strength properties of coal bottom ash (CBA) concrete have focused on concrete with a normal compressive strength, and thus, studies on the strength properties of high-strength concrete (HSC) containing CBA are limited. Therefore, the effects of replacing fine aggregates with CBA and variations in the curing age on the strength properties of HSC with a compressive strength of greater than 60 MPa were investigated in this study. The different CBA contents included 25, 50, 75, and 100%, and the different curing ages were 28 and 56 days. The mechanical properties of the HSC with CBA incorporated as fine aggregates were examined. The experimental results revealed that CBA could be partially or totally substituted for fine aggregates during HSC production. The test results also showed that the compressive, splitting tensile, and flexural strengths of the HSC containing CBA fine aggregates slightly decreased as the CBA content increased. Moreover, useful relationships between the compressive strength, splitting tensile strength, and flexural strength were suggested, and the predictions reasonably agreed with the measurements. Compared to those of the control specimen, the pulse velocities of the HSC specimens at various CBA contents decreased by less than 3%. In addition, equations for predicting the strength values of CBA concrete by using the ultrasonic pulse velocity were suggested.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3114
Author(s):  
Rami Eid ◽  
Boris Muravin ◽  
Konstantin Kovler

Acoustic Emission (AE) nondestructive tests have attracted great interest for their use in the determination of structural properties and behavior of reinforced concrete (RC) elements. One of the applications this method can contribute to is in high-strength concrete (HSC) columns. These elements have a great advantage in the lower stories of high-rise buildings. However, the premature failure of the concrete cover and the brittleness nature of the failure is of a concern for engineers. This paper presents a study on the AE monitoring of HSC columns subjected to compressive axial loading. The study consists of four large-scale reinforced HSC columns with different confinement reinforcement and height. It is shown that the AE distributions in the columns are categorized by three stages. Moreover, the levels of loads reached at the first AE macro event are similar to the lower range levels of the nominal axial compressive strengths of the tested specimens, while the majority of macro AE events are located at the concrete cover. Based on the results of this study, AE monitoring can provide indications for the damage and load levels attained by reinforced high-strength concrete columns subjected to compressive axial loading.


Sign in / Sign up

Export Citation Format

Share Document