scholarly journals Use of the support vector machine (SVM) algorithm to predict geometrical accuracy in the manufacture of molds via single point incremental forming (SPIF) using aluminized steel sheets

2021 ◽  
Vol 15 ◽  
pp. 1562-1571
Author(s):  
Pablo E. Romero ◽  
Oscar Rodriguez-Alabanda ◽  
Esther Molero ◽  
Guillermo Guerrero-Vaca
2019 ◽  
Vol 957 ◽  
pp. 156-166 ◽  
Author(s):  
Mihai Crenganis ◽  
Akos Csiszar

The paper presents the development of a dynamic model for the KUKA KR6 robot during single point incremental forming (SPIF) of metal sheets. The dynamic model of the KUKA KR6 robot is created in MATLAB®-SimMechanics. This dynamic model is necessary to verify that the mechanical structure of this low payload industrial robot of 36 Kg capacity can withstand some specific forces in incremental forming of some low plasticity alloys like Ti6Al4V. In the Centre of Studies and Research for Plastic Deformations of "Lucian Blaga" University of Sibiu, different attempts on single point incremental forming of thin metal sheets have been carried out and some of the studies are based on SPIF using the KUKA KR6-2 industrial robot. Nevertheless, the previous experimental attempts using the KUKA KR 6-2 robot in SPIF processes were realised only on 0.4 mm thick DC04 steel sheets. This material has very good deformability properties and the forces during the process are relatively small. After the dynamic model validation some specific circular trajectories are imposed and the forces that can appear during SPIF process for Ti6Al4V alloy sheets are taken into consideration. After forces analysis, it was concluded that the KUKA KR6 robot can be used in single point incremental forming processes for metal parts requiring greater forming forces.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1287
Author(s):  
Fernando Bautista-Monsalve ◽  
Francisco García-Sevilla ◽  
Valentín Miguel ◽  
Jesús Naranjo ◽  
María Carmen Manjabacas

Single point incremental forming (SPIF) is a cheap and flexible sheet metal forming process for rapid manufacturing of complex geometries. Additionally, it is important for engineers to measure the surface finish of work pieces to assess their quality and performance. In this paper, a predictive model based on machine learning and computer vision was developed to estimate arithmetic mean surface roughness (Ra) and maximum peak to valley height (Rz) of Ti6Al4V parts obtained by SPIF. An image database was prepared to train different classification algorithms in accordance with a supervised learning approach. A speeded up robust feature (SURF) detector was used to obtain visual vocabulary so that the classifiers are able to group the photographs into classes. The experimental results indicated that the proposed predictive method shows great potential to determine the surface quality, as classifiers based on a support vector machine with a polynomial kernel are suitable for this purpose.


Author(s):  
Rajiv Malhotra ◽  
N. Venkata Reddy ◽  
Jian Cao

This paper presents a generic methodology for tool path generation for an arbitrary component that can be formed by single point incremental forming (SPIF) to obtain required geometrical accuracy. Adaptive slicing concepts used in layered manufacturing have been modified and used for generating tool path for SPIF. Experiments and FEA have been carried out to study the effectiveness of the proposed methodology. Results indicate that the proposed methodology enhances the accuracy achievable in SPIF.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Shalin Marathe ◽  
Harit Raval

Single Point Incremental Forming (SPIF) process is one of the advanced forming techniques that industry has nowadays. Improved formability is one of the major advantages of the process. However, it is associated with limitation such as thinning of blank and poor geometrical accuracy of the formed part. In this study, forming behaviour of homogeneous blanks during the SPIF process has been investigated. A simulation study has been carried out using ABAQUS/Explicit. Effect of change in thickness, yield strength, strain index and strength coefficient of blank on responses like Plastic Equivalent Strain (PEEQ), percentage of thinning and geometrical accuracy of formed component has been evaluated. It has been found that change in the thickness has major effect on PEEQ and geometrical accuracy. Regarding percentage of thinning, change in the yield strength of blank is found to be majorly affecting.


2020 ◽  
Vol 4 (2) ◽  
pp. 362-369
Author(s):  
Sharazita Dyah Anggita ◽  
Ikmah

The needs of the community for freight forwarding are now starting to increase with the marketplace. User opinion about freight forwarding services is currently carried out by the public through many things one of them is social media Twitter. By sentiment analysis, the tendency of an opinion will be able to be seen whether it has a positive or negative tendency. The methods that can be applied to sentiment analysis are the Naive Bayes Algorithm and Support Vector Machine (SVM). This research will implement the two algorithms that are optimized using the PSO algorithms in sentiment analysis. Testing will be done by setting parameters on the PSO in each classifier algorithm. The results of the research that have been done can produce an increase in the accreditation of 15.11% on the optimization of the PSO-based Naive Bayes algorithm. Improved accuracy on the PSO-based SVM algorithm worth 1.74% in the sigmoid kernel.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Sign in / Sign up

Export Citation Format

Share Document