Effect of Milling Time on Consolidation of Al5083 Nanocomposite by Equal Channel Angular Pressing

2019 ◽  
Vol 969 ◽  
pp. 662-668
Author(s):  
K. Chandra Sekhar ◽  
Y. Umamaeshwar Rao ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

The effect of milling time on consolidation of Al5083-5wt. % nanoyttrium oxide powders which are milled from 0-35 hours using planetary ball mill. nanocrystalline structure was observed after 10hours of milling. X-ray diffraction results reveals the formation of 57nm and 31nm for 20hr and 35hr of milling with increase in lattice strain. Circular and Elliptical morphology of milled powders were confirmed through SEM with decrease in particle size. The 90o die channel angle ECAP die was used to consolidate 20hr and 35hr milled powder aided with and without back pressure. The optical micrographs reveal the formation of fine grains. The35hr milled powder shows the maximum densification of 96% and 20hr milled powder shows maximum hardness of 82HRB was observed in 20hr milled powder. Both are consolidated for two passes in route-A and sintered at 430°C for one hour.

2018 ◽  
Vol 52 ◽  
pp. 80-87 ◽  
Author(s):  
Lounes Belaid ◽  
Meriem Bendoumia ◽  
Mohamed Dakiche ◽  
Hanane Mechri ◽  
Djaffar Dahmoun ◽  
...  

The object of our research is to combine the properties of Mangalloys and nanoscale advantages in order to enhance the performance and extend the range of applications in the field of work-hardening parts such as railroad components, armor, and modern auto components. We have produced a high-manganese austenitic steel nanomaterial containing more than 12 wt% Mn, which is the level of Mn in Hadfield steel. This study experimentally determined the process of phase transitions involved in Fe–13 wt% Mn–1.2 wt% C alloy during mechano-synthesis and after subsequent annealing. The milling time ranged from 0.5 to 24 h. The unique features of the nanocrystalline structure and the changes in microstructure as a function of milling time were investigated by X-ray diffraction analysis, differential scanning calorimetry, and scanning electron microscopy coupled with EDX. The grain sizes and microstrain of the milled powder were determined. A thorough study has been done on the sample where a new phase fcc (at 24h of MA) was formed.The object of our research is to combine the properties of Mangalloys and nanoscale advantages in order to enhance the performance and extend the range of applications in the field of work-hardening parts such as railroad components, armor, and modern auto components. We have produced a high-manganese austenitic steel nanomaterial containing more than 12 wt% Mn, which is the level of Mn in Hadfield steel. This study experimentally determined the process of phase transitions involved in Fe–13 wt% Mn–1.2 wt% C alloy during mechano-synthesis and after subsequent annealing. The milling time ranged from 0.5 to 24 h. The unique features of the nanocrystalline structure and the changes in microstructure as a function of milling time were investigated by X-ray diffraction analysis, differential scanning calorimetry, and scanning electron microscopy coupled with EDX. The grain sizes and microstrain of the milled powder were determined. A thorough study has been done on the sample where a new phase fcc (at 24h of MA) was formed.


2015 ◽  
Vol 764-765 ◽  
pp. 23-27 ◽  
Author(s):  
G. Kondaiah ◽  
K. Chandra Sekhar ◽  
B. Chaithanyakrushna ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

In the present work a comparative study was carried out on consolidation of Al-5083 alloy and 5wt. % nanoyttrium oxide powders by Equal channel angular pressing (ECAP). The powders were milled for 10, 15 and 20 hrs using planetary ball mill under optimized process parameters. The milled powders were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Milled powders exhibit nanocrystalline single phase after 10hrs. The crystallite size after 20 hr of milling, alloy and composite powders were found to be 23nm and 57nm respectively. The 20hr milled alloy and composite powder was consolidated by equal channel angular pressing (ECAP) through 90o die channel angle using route-A for two passes with and without back pressure. Density of ECAPed samples were measured using Archimedes principle. The highest density was found as 96% for the alloy after 2 passes without backpressure and sintering and 94% for the composite after 2 passes with back pressure and sintering.


2011 ◽  
Vol 413 ◽  
pp. 109-116 ◽  
Author(s):  
Seyyed Abdalkarim Sajjadi ◽  
Hossein Beygi ◽  
Mansour Zare

In this Study, FeNi-Al2O3 nanocomposites with three different compositions were successfully synthesized through mechanical alloying of Fe2O3, Ni and Al powders mixture. Characterization of the products was accomplished by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The effect of various parameters such as chemical composition of starting materials, milling time and annealing on the phase evolution, morphology and microhardness of samples was investigated. It was found that FeNi matrix nanocomposites reinforced with 10, 15 and 30wt.% of Al2O3 were fabricated in 300, 240 and 180 min of milling, respectively. The crystallite size of the intermetallic FeNi phase and particle size of Al2O3 in the 720 min milled FeNi-30wt.%Al2O3 nanocomposite sample were calculated 28nm and 5.15 µm, respectively. Microhardness results also showed the same sample had the maximum hardness value of 790 HV.


2014 ◽  
Vol 592-594 ◽  
pp. 112-116 ◽  
Author(s):  
Kondaiah Gudimetla ◽  
B. Chaithanyakrushna ◽  
K. Chandra Sekhar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

In this present work the elemental powders pertaining to composition of Al5083 alloy was milled using planetary ball mill (Insmart systems) for 20 h. The elemental powders are loaded in HSS vial with 10:1 ball to powder ratio at 250 RPM. Various parameters such as crystalline size, particle size and morphology have studied using X-ray diffraction analysis and scanning electron microscopy. The crystallite size of the powders determined using Williamson Hall analysis of XRD is 23 nm after 20 h of milling. These nanocrystalline Al-5083 alloy powders were consolidated using ECAP with and without application of back pressure. Physical and mechanical properties such as density and hardness values were measured for sintered and unsintered samples.


1992 ◽  
Vol 7 (11) ◽  
pp. 2971-2977 ◽  
Author(s):  
T. Benameur ◽  
A.R. Yavari

X-ray diffraction patterns obtained during the grinding of Ni3Ge and Ni3Al alloys which at equilibrium exhibit the L12 ordered fcc structures show the emergence of a nanocrystalline structure and transformation to the disordered fcc form but little amorphization. Furthermore, the non-L12 Al2Pt alloy which also has a more strongly negative heat of mixing is easier to amorphize than the Ni3Ge and Ni3Al with L12 superstructure. This is in contrast to the Zr3Al compound (also L12-type) for which a short milling time is sufficient for obtaining complete amorphization. Variations in the aptitudes toward amorphization of the three L12-type alloys under ball-milling conditions are attributed in part to the differences in the lattice stability terms of their disordered fcc phases.


2001 ◽  
Vol 16 (12) ◽  
pp. 3485-3495 ◽  
Author(s):  
Xinghang Zhang ◽  
Haiyan Wang ◽  
Magdy Kassem ◽  
Jagdish Narayan ◽  
Carl C. Koch

Nanocrystalline Zn was prepared by cryomilling (mechanical attrition at liquid nitrogen temperature). Differential scanning calorimetry (DSC), x-ray diffraction, and transmission electron microscopy were used to study the structural changes and grain size distribution with milling time and subsequent annealing. Maxima in both stored enthalpy (for the low-temperature DSC peak) and lattice strain on the Zn basal planes were observed at the same milling time. Dislocation density on the basal planes is proposed as a major source for lattice strain and the measured stored enthalpy. The released enthalpy that might be due to grain growth is very small.


2006 ◽  
Vol 503-504 ◽  
pp. 481-486 ◽  
Author(s):  
Sergey Prokoshkin ◽  
I. Khmelevskaya ◽  
Sergey V. Dobatkin ◽  
E.V. Tatyanin ◽  
I.B. Trubitsyna

Structure formation in TiNi-based shape memory alloys depending on deformation temperature (-196 °C to 400 °C) and pressure (4 to 8 GPa) under conditions of high-pressure torsion (HPT) was studied using TEM and X-ray diffraction methods. The tendency to form an amorphous structure depends on relative positions of the deformation temperature and Ms temperature. Isothermal martensitic transformation is observed in the Ti – 48.5 % Ni alloy as a result of 10-year keeping at RT after HPT. Increasing of pressure suppresses the tendency to form an amorphous structure. The upper deformation temperature limits for amorphous and nanocrystalline structures formation are determined. The thermomechanical conditions of the equal-channel angular pressing for obtaining actual nanocrystalline structure are recommended.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2016 ◽  
Vol 1133 ◽  
pp. 75-79 ◽  
Author(s):  
Emee Marina Salleh ◽  
Sivakumar Ramakrishnan ◽  
Zuhailawati Hussain

The aim of this work was to study the effect of milling time on binary magnesium-titanium (Mg-Ti) alloy synthesized by mechanical alloying. A powder mixture of Mg and Ti with the composition of Mg-15wt%Ti was milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Milling process was carried out at 400 rpm for various milling time of 2, 5, 10, 15 and 30 hours. 3% n-heptane solution was added prior to milling process to avoid excessive cold welding of the powder. Then, as-milled powder was compacted under 400 MPa and sintered in a tube furnace at 500 °C in argon flow. The refinement analysis of the x-ray diffraction patterns shows the presence of Mg-Ti solid solution when Mg-Ti powder was mechanically milled for 15 hours and further. Enhancements of Mg-Ti phase formation with a reduction in Mg crystallite size were observed with the increase in milling time. A prolonged milling time has increased the density and hardness of the sintered Mg-Ti alloy.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507 ◽  
Author(s):  
Maxim Rudmin ◽  
Elshan Abdullayev ◽  
Alexey Ruban ◽  
Ales Buyakov ◽  
Bulat Soktoev

We investigated the mechanochemical synthesis of complex slow release fertilizers (SRF) derived from glauconite. We studied the effectiveness of the mechanical intercalation of urea into glauconite using planetary and ring mills. The potassium-nitric complex SRFs were synthesized via a mechanochemical method mixing glauconite with urea in a 3:1 ratio. The obtained composites were analyzed using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence analysis, and infrared spectroscopy. The results show that as duration of mechanochemical activation increases, the mineralogical, chemical, and structural characteristics of composites change. Essential modifications associated with a decrease in absorbed urea and the formation of microcrystallites were observed when the planetary milling time increased from 5 to 10 min and the ring milling from 15 to 30 min. Complete intercalation of urea into glauconite was achieved by 20 min grinding in a planetary mill or 60 min in a ring mill. Urea intercalation in glauconite occurs much faster when using a planetary mill compared to a ring mill.


Sign in / Sign up

Export Citation Format

Share Document