Structural and Mechanical Properties of Nanostructured Fe-Mn-C Alloys Prepared by Mechanical Alloying

2018 ◽  
Vol 52 ◽  
pp. 80-87 ◽  
Author(s):  
Lounes Belaid ◽  
Meriem Bendoumia ◽  
Mohamed Dakiche ◽  
Hanane Mechri ◽  
Djaffar Dahmoun ◽  
...  

The object of our research is to combine the properties of Mangalloys and nanoscale advantages in order to enhance the performance and extend the range of applications in the field of work-hardening parts such as railroad components, armor, and modern auto components. We have produced a high-manganese austenitic steel nanomaterial containing more than 12 wt% Mn, which is the level of Mn in Hadfield steel. This study experimentally determined the process of phase transitions involved in Fe–13 wt% Mn–1.2 wt% C alloy during mechano-synthesis and after subsequent annealing. The milling time ranged from 0.5 to 24 h. The unique features of the nanocrystalline structure and the changes in microstructure as a function of milling time were investigated by X-ray diffraction analysis, differential scanning calorimetry, and scanning electron microscopy coupled with EDX. The grain sizes and microstrain of the milled powder were determined. A thorough study has been done on the sample where a new phase fcc (at 24h of MA) was formed.The object of our research is to combine the properties of Mangalloys and nanoscale advantages in order to enhance the performance and extend the range of applications in the field of work-hardening parts such as railroad components, armor, and modern auto components. We have produced a high-manganese austenitic steel nanomaterial containing more than 12 wt% Mn, which is the level of Mn in Hadfield steel. This study experimentally determined the process of phase transitions involved in Fe–13 wt% Mn–1.2 wt% C alloy during mechano-synthesis and after subsequent annealing. The milling time ranged from 0.5 to 24 h. The unique features of the nanocrystalline structure and the changes in microstructure as a function of milling time were investigated by X-ray diffraction analysis, differential scanning calorimetry, and scanning electron microscopy coupled with EDX. The grain sizes and microstrain of the milled powder were determined. A thorough study has been done on the sample where a new phase fcc (at 24h of MA) was formed.

2019 ◽  
Vol 969 ◽  
pp. 662-668
Author(s):  
K. Chandra Sekhar ◽  
Y. Umamaeshwar Rao ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

The effect of milling time on consolidation of Al5083-5wt. % nanoyttrium oxide powders which are milled from 0-35 hours using planetary ball mill. nanocrystalline structure was observed after 10hours of milling. X-ray diffraction results reveals the formation of 57nm and 31nm for 20hr and 35hr of milling with increase in lattice strain. Circular and Elliptical morphology of milled powders were confirmed through SEM with decrease in particle size. The 90o die channel angle ECAP die was used to consolidate 20hr and 35hr milled powder aided with and without back pressure. The optical micrographs reveal the formation of fine grains. The35hr milled powder shows the maximum densification of 96% and 20hr milled powder shows maximum hardness of 82HRB was observed in 20hr milled powder. Both are consolidated for two passes in route-A and sintered at 430°C for one hour.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. T. Clavaguera-Mora ◽  
J. Zhu ◽  
M. Meyer ◽  
L. Mendoza-Zelis ◽  
F. H. Sanchez ◽  
...  

ABSTRACTThe evolution of the B2-AlFe phase during mechanical grinding in Ar has been examined as a function of milling time by X-Ray diffraction, transmission Mössbauer spectroscopy and differential scanning calorimetry. Short and long range disorder was observed to increase with the mechanical treatment up to the attainment of a steady state. The evolution of the long range order parameter and of the local atomic configurations at Fe sites were analyzed in terms of possible mechanisms for milling induced disordering. The kinetics of the thermal reordering was studied under continuous heating and isothermal calorimetrie regimes. Modeling of the reordering processes by diffusion controlled growth of pre-existing ordered grains is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. The results are consistent with a non uniform distribution of disorder throughout the sample and will be compared with preceding information on related systems.


2018 ◽  
Vol 18 (1) ◽  
pp. 18 ◽  
Author(s):  
Normyzatul Akmal Abd Malek ◽  
Hamizah Mohd Zaki ◽  
Mohammad Noor Jalil

The interaction of Active Pharmaceutical Ingredient (API) with other compounds will affect drugs stability, toxicity, modified dissolution profiles or may form a new compound with the different crystal structure. Acetaminophenol (APAP), the most common drug used widely (also known as Panadol) was mixed with Naringenin (NR) to glance for a new phase of interactions leading to new compound phase. The amide-acid supramolecular heterosynthon; N-H…O interaction between acid and the respective base were observed in the APAP-NR mixture blends. The interaction was prepared by the binary interaction from neat grinding and liquid-assisted grinding techniques at a different stoichiometry of binary mixture ratio of APAP-NR which were 1:1, 1:2 and 2:1 molar ratio. The interaction was estimated using Group Contribution Method (GCM) and physicochemical properties were characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), powder X-ray diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The GCM calculation gave good interaction strength at 212.93 MPa1/2. The ATR-FTIR, DSC and PXRD results obtained revealed an interaction with new phase formed.


2020 ◽  
Vol 65 ◽  
pp. 123-134
Author(s):  
Samira Lalaoua ◽  
Bouguerra Bouzabata ◽  
Safia Alleg ◽  
Abedelmalik Djekoun ◽  
David Shmool

Fe-10wt% La (OH)3 composite powders have been fabricated by ball milling, under argon atmosphere for milling periods of 0, 5 and 10 h, respectively. Changes in structural, morphological, thermal and magnetic properties of the powders during mechanical alloying and during subsequent annealing have been examined by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). XRD results: showed the formation of new phases (Fe and LaFeO3 perovskite) created through the ball milling. The results showed that the crystalline size of ball milled powders decreased with increasing the milling time. In fact, after 10 h of ball milling, La (OH)3 changes from nanostructure in amorphous structure. The magnetic measurements display a distinct saturation magnetization and coercivity.


2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


1992 ◽  
Vol 7 (4) ◽  
pp. 888-893 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
K. Sumiyama ◽  
K. Aoki ◽  
K. Suzuki

Nonequilibrium titanium-nitride alloy powders have been fabricated by a high energetic ball mill under nitrogen gas flow at room temperature and characterized by means of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Initial hcp titanium is completely transformed to nonequilibrium-fcc Ti–N after 720 ks of the milling time. The fcc Ti–N phase is stable at relatively low temperature and transforms at 855 K to Ti2N and δ phases. At the final stage of milling, the particle- and grain-sizes of alloy powders are 1 mm and 5 nm, respectively, and the lattice parameter is 0.419 nm.


2009 ◽  
Vol 67 ◽  
pp. 45-51
Author(s):  
Rohit Kumar Gupta ◽  
Vijaya Agarwala ◽  
Sunayan Thakur ◽  
Ramesh Chandra Agarwala ◽  
Bhanu Pant

High energy ball milling (HEBM) had been carried out to produce submicron size titanium aluminide intermetallics (TiAl) using elemental powders of Ti and Al alongwith Ni-P coated graphite. 1% graphite powders was added to stoichiometric composition of Ti48Al and ball milling was conducted for different milling time at varying rpm. The effect of milling time and rpm on particle size has been studied. The prepared samples have been characterized using X-ray diffraction, differential scanning calorimetry (DSC) and scaning elecron microscopy (SEM). Grain size as low as 500 nm could be achieved. Formation of Ti3Al, TiAl and carbon containing intermetallic compounds had been confirmed through X-ray diffraction. Milling time and rpm of mill is found to be important factors which control the final particle size.


1997 ◽  
Vol 12 (5) ◽  
pp. 1172-1175 ◽  
Author(s):  
Taiping Lou ◽  
Guojiang Fan ◽  
Bingzhe Ding ◽  
Zhuangqi Hu

The stoichiometric intermetallic compound NbSi2 has been synthesized by mechanical alloying (MA) elemental Nb and Si powders. The alloying process has been investigated by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the formation of the Nb2Si intermetallic compound occurs abruptly after 65 min of milling without any interruptions during the alloying process. However, short interruptions at a 5 min interval during ball milling result in a gradual reaction for the formation of the NbSi2 compound as well as a new metastable bcc structured solid solution. We conclude that the temperature rise during mechanical alloying plays an important role in initiating the abrupt reaction after an incubation milling time.


1992 ◽  
Vol 7 (11) ◽  
pp. 2971-2977 ◽  
Author(s):  
T. Benameur ◽  
A.R. Yavari

X-ray diffraction patterns obtained during the grinding of Ni3Ge and Ni3Al alloys which at equilibrium exhibit the L12 ordered fcc structures show the emergence of a nanocrystalline structure and transformation to the disordered fcc form but little amorphization. Furthermore, the non-L12 Al2Pt alloy which also has a more strongly negative heat of mixing is easier to amorphize than the Ni3Ge and Ni3Al with L12 superstructure. This is in contrast to the Zr3Al compound (also L12-type) for which a short milling time is sufficient for obtaining complete amorphization. Variations in the aptitudes toward amorphization of the three L12-type alloys under ball-milling conditions are attributed in part to the differences in the lattice stability terms of their disordered fcc phases.


Sign in / Sign up

Export Citation Format

Share Document