A Novel Method for Mixing Nanomaterials with Soil

2019 ◽  
Vol 25 ◽  
pp. 46-68 ◽  
Author(s):  
Ali Akbar Firoozi ◽  
Mohd Raihan Taha ◽  
Tanveer Ahmed Khan ◽  
Farzad Hejazi ◽  
Ali Asghar Firoozi ◽  
...  

Mixing of nano-sized powders with soils (macro-sized powders) is a noteworthy issue for geotechnical projects. Thus, this study examined the horizontal ball mill mixing of nano-copper oxide with kaolinite. Ball milling parameters (rotation speed, weight ratio of balls to powder and milling time) of the planetary ball milling were optimized for proper mixing of nano-copper oxide and kaolinite powder. Results showed that increase in mixing time decreased the agglomeration of nano-copper powders and kaolinite and increased the homogeneity of nano-copper powder with kaolinite particles. The quality of mixing was assessed through intensity and scale of segregation using concentration data obtained through energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. It was observed through these two tests that, increase in ball milling time after 6 hours resulted in grain size reduction. Field emission scanning electron microscopy analysis showed that nano-coppers were regularly found on the surface of kaolinite particles after 6 hrs. of horizontal milling at 4:1 ratio of balls to powder mixture. Furthermore, 24 hrs. mixing resulted in grinding of kaolinite particles and hence their size was reduced. Particle size analysis confirmed these results, as the highest size span value of 3.417 was observed after 6 hrs. milling with speed of 200 rpm.

2020 ◽  
Vol 38 (4A) ◽  
pp. 586-593
Author(s):  
Hayder A. Sallal ◽  
Alla A. Abdul-Hameed ◽  
Farhad. M. Othman

This study describes the preparation and study of the properties of Nano composite particles prepared in a sol-gel method which consists of two materials (Αl2Ο3-MgΟ). The powder was evaluated by x-ray diffraction analysis, scanning electron microscopy analysis (SEM), particle size analysis, and energy dispersive x-ray analysis (EDX) and antibacterial test. The evaluation results of the nanocomposite particles shows a good distribution of the chemical composition between aluminum oxide and magnesium oxide, smoothness in particles  size where it reached to (54.9, 59.8) nm at calcination in (550 0C and 850 0C) respectively, formation of different shapes of nanoparticles and different  phases of the Αl2Ο3 particles (kappa and gamma) and nanopowder have well antibacterial action, Therefore, this reflects the efficiency of the proposed method to manufacture the nanocomposite powder and the possibility of using this powder as a strengthening material for the composite materials and using these composite materials in bio applications, especially in the fabrication of artificial limbs.


2011 ◽  
Vol 11 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Yanxi Deng ◽  
Xuming Wang ◽  
Jinfeng Yin ◽  
Yanfeng Li ◽  
Hao Ding ◽  
...  

TiO2-diatomite composites were prepared using a two–stage ball-milling technique and they were subsequently characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and FTIR, showing that nanotitania had been successfully supported on the surface of diatomite. The as-prepared TiO2–diatomite composites were used to decompose methyl orange (MO). Good degradation efficiency was observed. The effects of milling conditions, such as milling time of diatomite suspension, the diatomite particle concentration in suspension, weight ratio of ball-to-powder, milling time of the mixed TiO2-diatomite suspension and dosage of titania, on photocatalytic degradation performance were systematically examined for the sake of achieving the best efficiency.


2012 ◽  
Vol 620 ◽  
pp. 309-313 ◽  
Author(s):  
Norlin Nosbi ◽  
Md Akil Hazizan

The effects of ball-milling parameter on the structures and properties of the synthesis of multi-walled carbon nanotubes (MWCNT)/alumina hybrid compound via methane decomposition process using Ni-Alumina catalyst were researched. The structural evaluation of particles compound was investigated by particle size analysis, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), FTIR spectrometer and scanning electron microscopy (SEM). The results indicated that with 300rpm 15h, the microstructure of the hybrid compound is greatly refined, and methane decomposition process distributed uniformly, thus increasing the efficiency of the carbon nanotubes growth process.


2021 ◽  
Vol 39 (3) ◽  
pp. 410-429
Author(s):  
Hany R. Ammar ◽  
Subbarayan Sivasankaran ◽  
Abdulaziz S. Alaboodi

Abstract In the present study, twenty seven [(Fe–35wt%Mn)100−x –Cu x ] alloy samples were processed using high-energy ball milling, followed by uniaxial compaction under different processing conditions. The compressibility behavior in terms of relative density (RD) was examined with milling time (MT: 1 h, 5.5 h, and 10 h), ball-to-powder mass ratio (BPMR: 5:1, 10:1, and 15:1), milling speed (MS: 100 rev/min, 200 rev/min, and 300 rev/min), compaction pressure (CP: 25–1,100 MPa), and alloy composition (Cu content [CC]: 0 wt%, 5 wt%, 10 wt%). Particle size analysis using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM) combined with energy-dispersive X-ray spectroscopy (EDS) were applied for microstructural characterization. The experiments were conducted based on the central composite design of response surface methodology (RSM), and the results for the compaction behavior were examined with the input parameters. Analysis of variance (ANOVA) test was applied to determine the most significant input parameters. The attained results revealed that increasing ball milling parameters (MT, MS, and BPMR) resulted in significant enhancements in the microstructural features, such as improved elemental dispersion and occurrence of refined particles with substantial decrease in the crystallite size. On the other hand, increasing the input parameters exhibited a detrimental influence on the compactibility and RD of the alloys. In addition, increasing the CC resulted in a substantial improvement in the compressibility and RD of the developed alloys. The recommended combination of the studied variables includes MT for 5 h, MS for 150 rev/min, BPMR of 10:1, and 10 wt%Cu to attain an acceptable compromise of enhanced microstructure features, improved compaction response, and RD.


2013 ◽  
Vol 690-693 ◽  
pp. 470-474
Author(s):  
Xiu Zhi Guo ◽  
Ruo Hui Chen ◽  
Wen Fu Song

Fe-N amorphous alloy and ε- FexN alloy were prepared by mechanical ball milling with Fe and solid hexagonal boron nitride (h-BN) as nitrogen resource. The microstructural and magnetic transforming rules of different volume ratios of mixtures of Fe and h-BN (1:12.5, 1:5.4, 1:1.2, and 1:0.38) was studied under different ball-to-powder weight ratios. phase transition and magnetism were characterized with X-ray diffraction and vibrating sample magnetometer (VSM). According to the results, samples of the first three volume ratios have similar phase transition rules in different ball-to-powder weight ratios, and the sample with smaller ball-to-powder weight ratio costs more time in alloy formation. The changing rules and mechanisms of coercivity of four ratio samples with the extension of ball milling time has been clarified.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


2016 ◽  
Vol 869 ◽  
pp. 58-63
Author(s):  
Luiz Otávio Vicentin Maruya ◽  
Bruna Rage Baldone Lara ◽  
Belmira Benedita de Lima ◽  
Vanessa Motta Chad ◽  
Gilberto Carvalho Coelho ◽  
...  

This study reports on effect of boron and carbon addition on the phase transformations during ball milling and subsequent sintering of Si3N4+B and Si3N4+C powder mixtures. Ball milling at room temperature was conducted using stainless steel vials (225 mL) and balls (19mm diameter), 300 rpm and a bal-to-powder weight ratio of 10:1. The as-milled powders were uniaxially compacted in order to obtain cylinder samples with 10 mm diameter, which were subsequently sintered under nitrogen atmosphere at 1500°C for 1h. Characterization of the as-milled powders and sintered samples was performed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Only peaks of Si3N4 were identified in X-ray diffractograms of as-milled Si3N4+B and Si3N4+C powders, suggesting that metastable structures were found during milling. After sintering at 1500°C for 1h, the Si3N4+BN and Si3N4+SiC ceramic composites were formed from the mechanically alloyed Si3N4+B and Si3N4+C powders.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1413
Author(s):  
Rafał Panek ◽  
Jarosław Madej ◽  
Lidia Bandura ◽  
Grzegorz Słowik

Nowadays, using fly ash for zeolites production has become a well-known strategy aimed on sustainable development. During zeolite synthesis in a hydrothermal conversion large amount of post-reaction solution is generated. In this work, the solution was used as a substrate for Na-A and Na-X zeolites synthesis at laboratory and technical scale. Obtained materials were characterized using particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherm. Produced zeolites revealed high purity (>98%) and monomineral zeolitic phase composition. The SiO2 content was in the range 39–42% and 40–38%, whereas Al2O3 content was 23–22% and 25–26% for Na-X and Na-A, respectively. TEM and BET analyses revealed Na-X zeolite pores were almost identical to commercial 13X with SBET in the range 671–734 m2/g. FTIR indicated slight differences between materials obtained at laboratory and technical scale in Si-O-(Si/Al) bridges of the zeolitic skeleton. The results showed good replicability of the laboratory process in the larger scale. The proposed method allows for waste solution reusability with a view to highly pure zeolites production in line with circular economy assumptions.


2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


Sign in / Sign up

Export Citation Format

Share Document