Local Orientation Measurements in 3D

2005 ◽  
Vol 105 ◽  
pp. 49-54 ◽  
Author(s):  
Dorte Juul Jensen

The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk. The spatial resolution is about 1x5x5 µm but diffraction from microstructural elements as small as 100 nm may be monitored within suitable samples. As examples of the use of the 3DXRD method, it is chosen to present results for complete 3D characterization of grain structures, in-situ “filming” of the growth of one interior grain during recrystallization, recrystallization kinetics of individual grains and crystallographic rotations of individual grains during tensile deformation.

2006 ◽  
Vol 519-521 ◽  
pp. 1569-1578
Author(s):  
Dorte Juul Jensen

By 3 dimensional X-ray diffraction (3DXRD) using high energy X-rays from synchrotron sources it is possible to study in-situ the nucleation and growth during recrystallization. In this paper it is described and discussed how 3DXRD can supplement EBSP measurements of nucleation and growth. Three types of studies are considered: i) orientation relationships between nuclei and parent deformed matrix, ii) recrystallization kinetics of individual bulk grains and iii) filming of growing grains in deformed single crystals.


2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 155-166 ◽  
Author(s):  
WOLFGANG BRAUN ◽  
KLAUS H. PLOOG

X-rays are ideal to study the structure of crystals due to their weak interaction with matter and in most cases allow a quantitative analysis using kinematical theory. To study the incorporation of atoms during crystal growth and to analyze the kinetics on the crystal surface high primary beam intensities available at synchrotrons are required. Our studies of the molecular beam epitaxy growth of III–V semiconductors reveal that, despite their similarity in crystal structure, the surface kinetics of GaAs (001), InAs (001) and GaSb (001) differ strongly. GaAs shows an unexpectedly large coarsening exponent outside the predicted range of Ostwald ripening models during recovery. GaSb exhibits dramatically different surface morphology variations during growth and recovery. Overgrowth of GaAs by epitaxial MnAs demonstrates the ability of X-ray diffraction to follow an interface as it is buried during heteroepitaxy, which is not possible by reflection high-energy electron diffraction.


2009 ◽  
Vol 156-158 ◽  
pp. 437-441 ◽  
Author(s):  
Hannes Grillenberger ◽  
Andreas Magerl

Oxygen precipitation in silicon has been studied in-situ by high energy X-ray diffraction. A gain of diffracted intensity is expected if an ideal crystal is distorted by growing precipitates as the diffraction mode changes from a dynamical to a more kinematical one. Irreversible changes in the intensity of a 220 and a 400 Bragg peak are detected for Czochralski grown samples only, but not in a float zone grown reference crystal. Thus, these changes are attributed to oxygen precipitation, which is confirmed by a subsequent classical ex-situ characterization. Further, the changes of the intensities of the two measured Bragg peaks are compared to each other to get the level of change in the diffraction mode from a dynamical to a kinematical one. The detection limit of the specific setup is estimated via a simulation of the defect inventory to correspond to a precipitate diameter of 50nm with the density of 6.9•109 1/cm3. The diffraction experiments are done with polychromatic and divergent X-rays generated by a laboratory source, albeit with high energy. This results in a simple and accessible setup for the characterization of oxygen precipitates.


2000 ◽  
Vol 07 (04) ◽  
pp. 437-446 ◽  
Author(s):  
G. RENAUD

The application of X-rays to the structural characterization of surfaces and interfaces, in situ and in UHV, is discussed on selected examples. Grazing incidence X-ray diffraction is not only a very powerful technique for quantitatively investigating the atomic structure of surfaces and interfaces, but is also very useful for providing information on the interfacial registry for coherent interfaces or on the strain deformation, island and grain sizes for incoherent epilayers.


2011 ◽  
Vol 26 (2) ◽  
pp. 134-137 ◽  
Author(s):  
K. Matsui ◽  
A. Ogawa ◽  
J. Kikuma ◽  
M. Tsunashima ◽  
T. Ishikawa ◽  
...  

Hydrothermal formation reaction of tobermorite in the autoclaved aerated concrete (AAC) process has been investigated by in situ X-ray diffraction. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. XRD measurements were conducted in a temperature range 100–190°C throughout 12 h of reaction time with a time interval of 4.25 min under a saturated steam pressure. To clarify the tobermorite formation mechanism in the AAC process, the effect of Al addition on the tobermorite formation reaction was studied. As intermediate phases, non-crystalline calcium silicate hydrate (C-S-H), hydroxylellestadite (HE), and katoite (KA) were clearly observed. Consequently, it was confirmed that there were two reaction pathways via C-S-H and KA in the tobermorite formation reaction of Al containing system. In addition, detailed information on the structural changes during the hydrothermal reaction was obtained.


2021 ◽  
Vol 28 (1) ◽  
pp. 146-157
Author(s):  
Alexander Schökel ◽  
Martin Etter ◽  
Andreas Berghäuser ◽  
Alexander Horst ◽  
Dirk Lindackers ◽  
...  

For high-resolution powder diffraction in material science, high photon energies are necessary, especially for in situ and in operando experiments. For this purpose, a multi-analyser detector (MAD) was developed for the high-energy beamline P02.1 at PETRA III of the Deutsches Elektronen-Synchrotron (DESY). In order to be able to adjust the detector for the high photon energies of 60 keV, an individually adjustable analyser–crystal setup was designed. The adjustment is performed via piezo stepper motors for each of the ten channels. The detector shows a low and flat background as well as a high signal-to-noise ratio. A range of standard materials were measured for characterizing the performance. Two exemplary experiments were performed to demonstrate the potential for sophisticated structural analysis with the MAD: (i) the structure of a complex material based on strontium niobate titanate and strontium niobate zirconate was determined and (ii) an in situ stroboscopy experiment with an applied electric field on a highly absorbing piezoceramic was performed. These experiments demonstrate the capabilities of the new MAD, which advances the frontiers of the structural characterization of materials.


2020 ◽  
Vol 321 ◽  
pp. 03026
Author(s):  
K. Yamanaka ◽  
A. Kuroda ◽  
M. Ito ◽  
M. Mori ◽  
T. Shobu ◽  
...  

In this study, the tensile deformation behavior of an electron beam melted Ti−6Al−4V alloy was examined by in situ X-ray diffraction (XRD) line-profile analysis. The as-built Ti−6Al−4V alloy specimen showed a fine acicular microstructure that was produced through the decomposition of the α′-martensite during the post-melt exposure to high temperatures. Using high-energy synchrotron radiation, XRD line-profile analysis was successfully applied for examining the evolution of dislocation structures not only in the α-matrix but also in the nanosized, low-fraction β-phase precipitates located at the interfaces between the α-laths. The results indicated that the dislocation density was initially higher in the β-phase and an increased dislocation density with increasing applied tensile strain was quantitatively captured in each constitutive phase. It can be thus concluded that the EBM Ti−6Al−4V alloy undergoes a cooperative plastic deformation between the constituent phases in the duplex microstructure. These results also suggested that XRD line-profile analysis combined with highenergy synchrotron XRD measurements can be utilized as a powerful tool for characterizing duplex microstructures in titanium alloys.


Sign in / Sign up

Export Citation Format

Share Document