Microstructure Control and Structure Analysis in the Semi-Solid State of Different Feedstock Materials for the Bearing Steel 100Cr6

2006 ◽  
Vol 116-117 ◽  
pp. 177-180 ◽  
Author(s):  
Wolfgang Püttgen ◽  
Wolfgang Bleck ◽  
B. Hallstedt ◽  
Peter J. Uggowitzer

The bearing steel 100Cr6 in the forged and hardened condition is of great importance in industrial use. Escaping the geometry restrictions of conventional forging, the application of semi-solid metalworking (SSM) offers significantly increased design freedom. Using conventionally available rolled feedstock material with carbide banding, however, results in a higher segregation tendency during thixoforging, and thus special attention was paid to the feedstock’s “quality”. To achieve a fine-grained, globular microstructure in the semi-solid state, castings with and without the addition of 100 ppm titanium were compared with the hot rolled material. With its inherent nitrogen Ti forms TiN particles, which reduce grain-growth in austenite. The results indicate that TiN precipitates strongly affect grain growth during solid state processing, but the grain size in the semi-solid state can only be influenced for short process times. Generally the cast feedstock materials possess smaller globulites in the semi-solid state compared to forgings, so that a reduction of the sponge effect and a minimization of the segregation in produced components are expected. Since the cast material already showed a fine-grained, globulitic microstructure, the use of TiN is not recommended because of the possible negative influence of TiN on the dynamic mechanical properties.

2011 ◽  
Vol 689 ◽  
pp. 472-478 ◽  
Author(s):  
Yue Fei ◽  
Bin Tang ◽  
Hui Chang ◽  
Zhi Shou Zhu ◽  
Zhong Bo Zhou ◽  
...  

A study on the kinetics of β grain growth of a fine-grained, hot-rolled TB-13 alloy was carried out by isochronal and isothermal solution treatments. The grain size of the as-rolled and as-solution-treated samples was determined by metallographic observation using the linear intercept method. The kinetic equations and the Arrhenius-type equation were applied to calculate the β grain growth exponent and the activation energy for β grain growth at special temperatures. The results showed that the β grain growth rate decreased with elongating solution treated time, but increased with increasing solution treated temperature. The β grain growth exponents (n) were 0.394, 0.403 and 0.406 during the solution treated temperatures at 1103K, 1153K and 1203K, respectively. The values of n increased with increasing solution treated temperature and the determined activation energy (Qm) for β grain growth after holding for 0.5h at 1103K-1203K was around 156KJ/mol.


2008 ◽  
Vol 141-143 ◽  
pp. 127-132 ◽  
Author(s):  
Rainer Gasper ◽  
Alexander Schönbohm ◽  
Manfred Enning ◽  
Dirk Abel

The inductive heating of the feedstock material is a very important step in the processing of semi solid metals. On the one hand, the billet has to be heated as fast as possible to the target temperature. On the other hand, it must be guaranteed that the outer area does not begin to melt prematurely. Also, at the end of the heating the billet should have an uniform temperature distribution in order to obtain good forming results. A flatness based control will be presented to calculate the induced power over time trajectory from a desired trajectory for the temperature in the middle of the billet. The temperature trajectory has to be chosen so that the billet has the desired temperature behaviour. Experimental results will be shown for the flatness based inductive heating of X210CrW12 just below the semi solid state.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 456
Author(s):  
Dongsheng Qian ◽  
Chengfei Ma ◽  
Feng Wang

Hot rolling is an essential process for the shape-forming of bearing steel. It plays a significant role in the formation and distribution of flow lines. In this work, the effect of flow lines is investigated by analyzing the microstructure and mechanical anisotropy of hot-rolled bearing steel. It was found that carbides rich with Cr and Mn elements are distributed unevenly along the flow-line direction of the hot-rolled bearing steel. Moreover, the mechanical characterization indicates that ultimate tensile strength and yield strength do not have any significant difference in two directions. Nevertheless, an ultrahigh section shrinkage of 57.51% is obtained in the 0° sample that has parallel flow lines, while 90° sample shows poor section shrinkage. The uneven distributed carbides will affect the direction and speed of crack propagation during tensile deformation. Therefore, the 0° and 90° samples exhibit great difference in plastic property. Meanwhile, after tensile deformation, a delaminated texture is observed in the flow lines, which may be caused by different degrees of deformation of grains due to the uneven distribution of carbides. The results of this work may provide guidance for controlling and optimizing flow lines in the manufacturing of bearing rings.


2020 ◽  
Vol 92 (20) ◽  
pp. 14031-14037
Author(s):  
Hinako Hashimoto ◽  
Kyosei Goto ◽  
Kouhei Sakata ◽  
Satoshi Watanabe ◽  
Tomoyuki Kamata ◽  
...  

2011 ◽  
Author(s):  
Piotr Macioł ◽  
Władysław Zalecki ◽  
Roman Kuziak ◽  
Aleksandra Jakubowicz ◽  
Stanisław Węglarczyk

2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2001 ◽  
Vol 27 (1) ◽  
pp. 63-71 ◽  
Author(s):  
S Sivakumar ◽  
Manjunath Subbanna ◽  
Satyam S Sahay ◽  
Vijay Ramakrishnan ◽  
P.C Kapur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document