Al-Substituted Li[Li(1/3-x/3)Crx-0.05M0.05Mn(2/3-2x/3)]O2 Cathode Synthesized via Sol-Gel Process

2007 ◽  
Vol 124-126 ◽  
pp. 631-634 ◽  
Author(s):  
I. Ruth Mangani ◽  
C.W. Park ◽  
Y.K. Yoon ◽  
S.H. Kim ◽  
J. Kim

This work reports the effect of doping aluminium in the Li[Li(1/3-x/3)Crx-0.05M0.05Mn(2/3- 2x/3)]O2 (x= 0.2; M= Al), layered cathode material. The cathode material was prepared by citric acid assisted sol-gel process. The sample is characterized by TG/DTA, XRD and FESEM measurements. The Al- doped cathode has delivered an initial discharge capacity of 250 mAh/g with a current density of 0.12 mA/cm2.

2020 ◽  
Vol 49 (4) ◽  
pp. 1048-1055 ◽  
Author(s):  
Xin Yu ◽  
Fang Hu ◽  
Fuhan Cui ◽  
Jun Zhao ◽  
Chao Guan ◽  
...  

CuV2O6 nanowires as a cathode material for Zn-ion batteries display an initial discharge capacity of 338 mA h g−1 at a current density of 100 mA g−1 and an excellent cycle performance after 1200 cycles at 5 A g−1.


2018 ◽  
Vol 47 (35) ◽  
pp. 12337-12344 ◽  
Author(s):  
Xia Wu ◽  
Shi-Xi Zhao ◽  
Lü-Qiang Yu ◽  
Jin-Lin Yang ◽  
Ce-Wen Nan

Sulfur has been successfully employed into Li2MnSiO4 and results in a high initial discharge capacity and excellent cycling stability.


2017 ◽  
Vol 4 (11) ◽  
pp. 1806-1812 ◽  
Author(s):  
Shibing Zheng ◽  
Jinyan Hu ◽  
Weiwei Huang

A novel high-capacity cathode material C4Q/CMK-3 for SIBs shows an initial discharge capacity of 438 mA h g−1 and a capacity retention of 219.2 mA h g−1 after 50 cycles.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
He Wang ◽  
Mingning Chang ◽  
Yonglei Zheng ◽  
Ningning Li ◽  
Siheng Chen ◽  
...  

A lithium-rich manganese-based cathode material, Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2, was prepared using a polyvinyl alcohol (PVA)-auxiliary sol-gel process using MnO2 as a template. The effect of the PVA content (0.0–15.0 wt%) on the electrochemical properties and morphology of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 was investigated. Analysis of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 X-ray diffraction patterns by RIETAN-FP program confirmed the layered α-NaFeO2 structure. The discharge capacity and coulombic efficiency of Li1.25Ni0.2Co0.333Fe0.133Mn0.333O2 in the first cycle were improved with increasing PVA content. In particular, the best material reached a first discharge capacity of 206.0 mAhg−1 and best rate capability (74.8 mAhg−1 at 5 C). Meanwhile, the highest capacity retention was 87.7% for 50 cycles. Finally, electrochemical impedance spectroscopy shows that as the PVA content increases, the charge-transfer resistance decreases.


2015 ◽  
Vol 39 (11) ◽  
pp. 8971-8977 ◽  
Author(s):  
Yuanchang Si ◽  
Zhi Su ◽  
Yingbo Wang ◽  
Ting Ma ◽  
Juan Ding

0.8LiFePO4·0.2Li3V2(PO4)3/C composites were synthesized by a new sol–gel method, which delivered an initial discharge capacity of 158.7 mA h g−1 at 0.1C.


2019 ◽  
Author(s):  
Debanjana Pahari ◽  
Sreeraj Puravankara

A novel cathode material with Ti-substitution on Ni site, P2-type Na0.67Ni0.25Ti0.08Mn0.67O2 has been synthesized via solid-state synthesis method and characterized electrochemically. Na0.67Ni0.25Ti0.08Mn0.67O2 electrodes have been observed tobe highly reversible at higher voltage ranges. The electrodes have an initial discharge capacity of 125 mAhg-1and can retain around 84% of this capacity (105 mAhg-1) even after 50 cycles at 0.1C when cycled at an uppercut-off voltage of 4.3 V. Na0.67Ni0.25Ti0.08Mn0.67O2 electrodes are believed to suppress the irreversible P2-O2 transformation by diverting the charging reaction through a more reversible P2-OP4transition.


2015 ◽  
Vol 3 (15) ◽  
pp. 7870-7876 ◽  
Author(s):  
Xiaoqin Zhao ◽  
Min Liu ◽  
Yong Chen ◽  
Bo Hou ◽  
Na Zhang ◽  
...  

L-Ti3C2 was prepared by exfoliating Ti3AlC2 in 40% HF. With sulfur-loaded L-Ti3C2 as cathodes, Li–S batteries deliver a high initial discharge capacity of 1291 mA h g−1, an excellent capacity retention of 970 mA h g−1 and coulombic efficiency of 99% after 100 cycles.


2014 ◽  
Vol 687-691 ◽  
pp. 4331-4334
Author(s):  
Han Ping Zhu ◽  
Peng Ding ◽  
Song Fang ◽  
Hailin Liu

nanoMn3O4was prepared by a simple solvothermal method. The structure, morphology and electrochemical properties of the products were investigated by XRD, SEM and constant current discharge-charge test. The results of XRD and SEM shows that nanoMn3O4is high-purity, and it’s diameter is about 30 nm. It could deliver an initial discharge capacity of 1324.4 mAh g-1at the current density of 25.5 mA g-1, and the specific discharge capacity is 586.9 mAh g-1after 30 cycles at the current density of 30.4 mA g-1.


2012 ◽  
Vol 430-432 ◽  
pp. 937-940
Author(s):  
Heng Wang ◽  
Yan Li Ruan ◽  
Zhe Chi Shi

LiFePO4 material was synthesized at 650°C in an N2 atmosphere using a sol-gel method. This material showed a well developed XRD pattern (orthorhombic structure, Pnma) without peaks at 2θ=41°, indicating the absence of FeP or metallic Fe2P impurities. The Li/LiFePO4 cell showed a high initial discharge capacity of more than 140mAh/g and no capacity decrease until the 50th cycle (>99.0%).


2019 ◽  
Author(s):  
◽  
Khaleel Idan Hamad

Many synthesis techniques like sol-gel, co-precipitation, hydrothermal, pyrolysis, and many more have been used to synthesize batteries' active electrode materials. High surface area cathode materials with smaller nanoparticles are favored for their higher reactivity compared to materials with particles of larger size. Sol-gel and co-precipitation methods have been primarily adopted because they can produce the desirable particle size easily and on a large scale. This dissertation details an efficient and cost-effective process for using a newly developed sol-gel method that uses glycerol solvent instead of the conventionally used water. Glycerol has three hydroxyl groups (OH) instead of one in water. These can play an important role in nanoparticle formation at earlier stages by speeding up the reaction. One of the main reasons for capacity fade in batteries is cationic mixing between Ni2+ and Li+. This results in blocking of the Li+ path and ultimately poor cyclability. This capacity fade has been successfully minimized in our current work by taking advantage of the high heat released from glycerol to get partially crystalline nanoparticles that could mitigate cationic mixing at high temperatures. The first cathode material synthesized using glycerol solvent was LiMn1/3Ni1/3Co1/3O2 (LMNC) layered oxide cathode material. Temperature's effects on the particles' morphologies, sizes, and electrochemical performances have been studied at four different temperatures. LMN2 was annealed at 900 �C/8hr and shows desirable particles size of ~ 0.3 (�_m), an initial discharge capacity of 177.1 mAh/g in the first cycle, and a superior capacity retention of 83.7% after 100 cycles. The process takes eight hours, rather than >12hr when using other solvents to prepare LMNC material at high temperatures. The results also demonstrate the higher stability and lower cationic mixing after 100 cycles. To increase capacity and voltage, lithium-rich cathode materials with the formula Li1.2Mn0.51Ni0.145+xCo0.145-xO2 (x = 0 (LR2), 0.0725 (LR1)) have been successfully synthesized. In this material, cobalt (Co) content has been decreased by half and the larger produced particles have suppressed the total activation of Li2MnO3 phase in the first charge cycle. The specific discharge capacity retention of LR1 at 1C between 2 and 4.8 V was more than 100% after 100 cycles. Further improvements to LR1 cathode materials have led to an increase in the initial discharge capacity to 248 mAh/g at 0.1C. This is achieved by using an equimolecular combination of acetate and nitrate salt anions (LRACNI) with cornstarch. Cornstarch acts as a capping agent with the nitrate salt anions, and a gelling agent with acetate based anions. LRACNI shows an intermediate particle size with satisfactory capacity retention upon cycling and the lowest cationic mixing. LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most commercialized cathode materials for lithium-ion batteries. It is challenging to have a high Ni content with Li in one combination electrode because cationic mixing increases proportionally. The use of glycerol has diminished the cationic mixing. High capacity retentions of 97% at 1C after 50 cycles, 87.6% at 0.3C after 100 cycles, and 93.6% at 0.1C after 70 cycles have been successfully achieved, which are better than those previously reported.


Sign in / Sign up

Export Citation Format

Share Document