The Preparation and Optical Property of ZnO Thin-Film by Electrospray

2009 ◽  
Vol 155 ◽  
pp. 151-154 ◽  
Author(s):  
Yan Huai Ding ◽  
Ping Zhang ◽  
Yong Jiang ◽  
Fu Xu ◽  
Jing Chen ◽  
...  

ZnO thin-films were prepared from sol-gel precursors using electrospray method. The structure, morphology and optical property of ZnO thin-films deposited on glass substrates were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and absorption spectrums (ABS). The surface images obtained directly from AFM showed the compact ZnO films were composed of wurtzite ZnO nanoparticles. The ZnO films presented high optical transmittance in the visible region and strong absorption in ultraviolet region.

2007 ◽  
Vol 14 (03) ◽  
pp. 425-429
Author(s):  
KASIMAYAN UMA ◽  
MOHAMAD RUSOP ◽  
TETSUO SOGA ◽  
TAKASHI JIMBO

ZnO thin films were prepared on silicon (001) and corning glass substrates using Pulsed laser deposition (PLD) technique with different oxygen pressures. The microstructure, crystallinity, and resistivity of the films depend on the oxygen pressure used. The effects of the films grown at room temperature and at 500°C with different oxygen pressures have been investigated by analyzing the optical and electrical properties of the film. The XRD analysis showed that the high intensity of c-axis orientation of ZnO thin films was obtained under high oxygen pressure and this leads to greater electrical and optical properties. By applying high pressure oxygen, the resistivity value was decreased and optical transmittance became higher in the visible region. The surface morphology of the films showed that the smooth surface was observed without any cracks.


2007 ◽  
Vol 21 (31) ◽  
pp. 5257-5263 ◽  
Author(s):  
S. W. XUE ◽  
X. T. ZU ◽  
X. XIANG ◽  
M. Y. CHEN ◽  
W. G. ZHENG

ZnO thin films were first prepared by the sol–gel process, and then Ge ions were implanted into the ZnO films. The effects of ion implantation on the structural and optical properties of the ZnO films were investigated by X-ray diffraction, photoluminescence (PL), and optical transmittance measurements. Measurement results showed that the intensity of the (002) diffraction peak was decreased and the full width at half maximum was narrowed. PL emission was greatly extinguished after Ge ion implantation. Both the near band edge (NBE) excitonic UV emission at 391 nm and the defect related deep level emission centered at 470 nm in the visible region were decreased after Ge ion implantation. NBE peak and the absorption edge were observed to have a blueshift toward higher energy.


2012 ◽  
Vol 576 ◽  
pp. 607-610 ◽  
Author(s):  
Saeed Mohammadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

The optically transparent conducting molybdenum doped indium oxide (IMO) thin films were deposited on glass substrates by sol-gel spin coating technique. The effect of various molybdenum contents in the range of 0.25–1 at.% on the structural, morphological, optical and electrical properties was studied. XRD results confirmed the formation of cubic bixbyite structure of In2O3 with preferred orientation along (222) plane. Microstructural studies show nearly spherical morphology for thin films with size in the range of 20-40 nm. The films doped with 0.25 at.% Mo found to exhibit a minimum electrical resistivity of 188×10-3 Ω.cm and an average optical transmittance of more than 80% in the visible region with a band gap of 3.85 eV.


2012 ◽  
Vol 510-511 ◽  
pp. 186-193 ◽  
Author(s):  
Ashari Maqsood ◽  
M. Islam ◽  
M. Ikram ◽  
S. Salam ◽  
S. Ameer

ZnO thin films were prepared by sol-gel method. Prepared thin films were then characterized by SEM, XRD, EDX and Hall effect measurements. SEM confirmed the morphological studies of ZnO thin films. Crystallite size is calculated using the Scherrer formula. Crystallite and grain sizes are obtained through XRD and SEM. EDS analysis confirms mass percentage of ZnO deposited. Decreasing trend of magneto resistance with temperature is observed. The optical transmission spectra of the solgel deposited ZnO thin films showed high transmittance (>70%) in the visible region and indicates that the transmittance of ZnO films gradually decreased as the thickness increased. Decreasing trend of resistivity and sheet resistance with thickness are also observed. The IV characterization of ZnO thin films under influence of UV and dark conditions are reported. The dc electrical resistivity data follow the hoping model.


2015 ◽  
Vol 1109 ◽  
pp. 587-592
Author(s):  
N.A.M. Asib ◽  
Aadila Aziz ◽  
A.N. Afaah ◽  
M. Rusop ◽  
Zuraida Khusaimi

In this study, Zinc oxide (ZnO) nanostructures have been fabricated on glass substrates coated with Titanium dioxide (TiO2) of different layers, which act as seeded-template, by a solution-immersion method. The substrates were coated with TiO2 by using sol-gel spin coating at five different layers of TiO2: 1, 3, 5, 7 and 9. The effects of the layers to the growth of ZnO nanostructures were observed by using Ultraviolet-Visible (UV-Vis) spectroscopy, Raman spectroscopy and Photoluminescence (PL) spectroscopy. UV-vis spectra of films display the increasing of absorbance properties at visible region as the TiO2 layers increase, as well as at UV region. Meanwhile, at visible region the transparency of TiO2: ZnO films reduce as the layers of TiO2 increase from 1 layer to 9 layers. Raman analysis shows the presence of ZnO in all the TiO2 seeded-templates. From the result, it is confirmed the existence of mixed crystalline structure of both materials in these TiO2: ZnO thin films and PL spectra of the films show seeded TiO2 thin films has lower intensity of visible emission and high ratio of IUV/IVIS compared to the non-seeded TiO2 This contributes to the lower structural defects, oxygen vacancies, impurities and has the most improved optical properties.


2007 ◽  
Vol 1013 ◽  
Author(s):  
Stefan Antohe ◽  
Cezar Tazlaoanu ◽  
Gabriel Socol ◽  
Larisa Magherusan ◽  
Ionut Enculescu ◽  
...  

AbstractStructural, electrical and optical characterizations of nanostructured ZnO thin films used as photosensitized electrodes in photovoltaic cells applications are reported. Nanostructured ZnO thin films were deposited on optical glass substrates by pulsed-laser deposition (PLD), their structure and morphology being optimized for photovoltaic applications. Structural analysis of the samples by X-ray diffraction revealed that the films consist of a hexagonal-close-packed wurtzite type phase ZnO, (001) preferentially oriented in the growth direction. The ZnO films are highly transparent in visible region of solar spectrum, and exhibit electrical resistivities in the range 10-4 - 10-2Ω.m


2014 ◽  
Vol 970 ◽  
pp. 120-123 ◽  
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Rosli Hussin ◽  
Zuhairi Ibrahim

Undoped nanocrystalline ZnO thin films were deposited onto the glass substrates via the low cost sol-gel dip coating method. The as-grown ZnO films were annealed at the temperatures ranging from 400 °C to 550 °C. The X-ray diffraction (XRD) pattern revealed that the annealed ZnO films were polycrystalline with hexagonal wurtzite structure and majority preferentially grow along (002) c-axis orientation. Atomic force microscopy (AFM) micrographs showed the improvement of RMS roughness and grain size as annealing temperature increased. The ZnO films that annealed at 500 oC exhibited the lowest resistivity value.


2013 ◽  
Vol 832 ◽  
pp. 368-373
Author(s):  
Mohd Firdaus Malek ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Musa Mohamed Zaihidi ◽  
Zuraida Khusaimi ◽  
...  

Nanocrystalline zinc oxide (ZnO) thin films have been obtained by the sol gel process. A stable and homogeneous solution was prepared by dissolving zinc acetate dehydrate as a starting material in a solution of 2-methoxyethanol and monoethanolamine (MEA). The molar concentration of zinc acetate was fixed at 0.6 mol/L while the molar ratio of MEA to zinc acetate was kept at 1:1. The films were deposited by various deposition speeds by dip-coating on glass substrates, and subsequently transformed into nanocrystalline pure ZnO films after a thermal treatment. Various deposition speeds were selected as the parameter to optimize the thin films quality. The structural and optical properties of the ZnO films were studied by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, respectively. The electrical properties of the ZnO thin films were characterised by dc 2 probing system and power supply (Advantest R6243). It was found that the deposition speed affects the resultant properties of ZnO thin films.


Quimica Hoy ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 4
Author(s):  
Jesus A. Sandoval ◽  
Ana M. Arato ◽  
E. Perez Tijerina ◽  
A. G. Castillo ◽  
T. K. Das Roy ◽  
...  

Highly transparent ZnO thin films were prepared using spray pyrolysis of a solution containing Zn(OAc)2 and SbC13 on glass substrates kept at 400ºC. Further, these films were doped with Sb by in situ process by dissolving SbCl3 in the spray solution. Crystallographic structural analysis was done using X-ray diffractometer and elemental analysis was done using Auger electron spectrometer. Morphological characterization was done by atomic force microscopy. The UV-Vis transmittance measurements indicated that the films were 90% transparent in the visible region. The value of band gap energy calculated from UV-Vis characterization showed that undoped and Sb doped films have slightly different band-gap energies. The electrical resistivity measurements showed a substantial change in the resistance of the ZnO thin films due to Sb doping.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650007
Author(s):  
Mohamed Othmane ◽  
Abdallah Attaf ◽  
Hanane Saidi ◽  
Fouad Bouaichi ◽  
Nadia Lehraki ◽  
...  

We investigated the structural, electrical and optical properties of zinc oxide thin films as the n-type semiconductor. In the present paper, the effect of substrate temperature on the synthesis of ZnO thin films was carried out from 250[Formula: see text]C to 500[Formula: see text]C. ZnO thin films were deposited on glass substrates via ultrasonic spray technique with 0.2[Formula: see text]mol/L of zinc acetate dehydrate. The crystal quality of the thin films was analyzed by X-ray diffraction which results in modified substrate temperature. The optical transmittance and electrical conductivity measurements were carried out by Ultraviolet-visible spectrophotometer and four-point methods, respectively. Polycrystalline films with a hexagonal wurtzite structure with (100) and (002) preferential orientation corresponding to ZnO films were observed at high temperature. The optimal values of the average crystallite size of the ZnO films under consideration are observed beginning with 350[Formula: see text]C of substrate temperature. All films exhibit an average optical transparency of about 85% in the visible region. The shift of optical transmittance toward higher wavelength can be shown by the increase of bandgap energy from 3.245[Formula: see text]eV to 3.281[Formula: see text]eV with increasing substrate temperature of 250–500[Formula: see text]C. The observed Urbach energy of ZnO thin films decreases from 0.11311[Formula: see text]eV to 0.04974[Formula: see text]eV. At a high temperature, the electrical conductivity of ZnO films was increased from [Formula: see text] to 41.58 ([Formula: see text].cm)[Formula: see text] with the increasing substrate temperature from 350[Formula: see text]C to 500[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document