Material Removal Distribution of Chemical Mechanical Polishing by the Bionic Polishing Pad with Phyllotactic Pattern

2011 ◽  
Vol 175 ◽  
pp. 87-92
Author(s):  
Yu Shan Lu ◽  
Jun Wang ◽  
Nan Li ◽  
Tian Zhang ◽  
Min Duan ◽  
...  

In order to make the material removal distribution on polishing silicon surface more non-uniform during the chemical mechanical polishing (CMP), a kind of the bionic polishing pad with phyllotactic pattern has been designed based on phyllotaxis theory, and by polishing experiment, the effects of the phyllotaxis parameters on material removal distributions on silicon wafer surfaces are investigated. The research results show that the material removal distribution of polishing silicon surface more uniform and the edge rounding of polishing wafer can be decreased when the phyllotaxis parameters of the polishing pad are reasonably selected.

2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2014 ◽  
Vol 1027 ◽  
pp. 167-170 ◽  
Author(s):  
Jian Xiu Su ◽  
Jia Peng Chen ◽  
Hai Feng Cheng ◽  
Song Zhan Fan

In chemical mechanical polishing (CMP) of ultra-thin stainless steel, the oxidant of polishing slurry determines the material removal rate (MRR). In this paper, the influences of oxidant in slurry on MRR and surface roughness have been studied in CMP of ultra-thin 304 stainless steel based on alumina (Al2O3) abrasive. The research results show that, in the same conditions, the MRR increases with the increase of the oxidant C and the oxidant B, the MRR decreases with the increase of the oxidant A and the MRR is max with the oxidant C. It indicated that the oxidant C has a large effect on MRR in CMP of the 304 stainless steel. The research results can provide the reference for studying the slurry in CMP of ultra-thin stainless steel.


2010 ◽  
Vol 102-104 ◽  
pp. 658-662 ◽  
Author(s):  
Jian Xiu Su ◽  
Xi Qu Chen ◽  
Jia Xi Du ◽  
Xiu Ying Wan ◽  
Xin Ning

In order to understand the material removal mechanism in the process of chemical mechanical polishing (CMP), the states of abrasives in the slurry and on the polishing pad in CMP process have been studied by testing. It was concluded that although the abrasive in the slurry is in the form of agglomeration, but the abrasive on the polishing pad are in approximately uniform layer distribution. The different CMP slurries had been designed for CMP test of MRR. According to analyzing the test results, it was concluded that the mechanical action produced by the abrasive is the main mechanical action in wafer CMP process and the MRR mainly results from the interaction between the mechanical action of the abrasives and the chemical action of slurry. These results will provide a reliable basis for the building of abrasive trajectory model and a theoretical guide to further understanding the material removal mechanism in wafer CMP.


1999 ◽  
Vol 566 ◽  
Author(s):  
Lei Shan ◽  
Steven Danyluk ◽  
Joseph Levert

We have found that the entrainment of a slurry between a silicon surface and a polyurethane pad will cause the generation of subambient pressure at that interface. These pressures cause the silicon to be further impressed into the pad. We have measured these pressures and this paper reports on the pressure distribution maps over an area beneath a 100mm diameter silicon wafer. The pressures are generally not uniform. The leading 2/3 of the wafer has subambient pressures of the order of 50kPa and the trailing 1/3 of the wafer has positive pressures of approximately 10kPa. The reasons for the subambient pressures is related to the dynamics of the compression of pad asperities, the boundary effects of the silicon edge, the rebound of the asperities, and re-infiltration of the slurry.


2007 ◽  
Vol 364-366 ◽  
pp. 686-689 ◽  
Author(s):  
Yu Hui Sun ◽  
Ren Ke Kang ◽  
Dong Ming Guo

LCOS panel as a kind of new LCD is a sort of liquid crystal display device that operates in a reflective mode. In this paper, a method on realising planarization in large scale liquid crystal on silicon with chemical mechanical polishing (CMP) technology is discussed in detail. The nonuniform distributions of polishing pressure and the relative speed between the wafer and the polishing pad are main factors affecting the within-wafer non-uniformity. This research integrated a physical mixed model of chemical-mechanical polishing that combineed the effects of polishing pad roughness and slurry hydrodynamic pressure. Based on the contact mechanics and modified Reynolds equation, the asperity contact and fluid flow pressures were calculated. Taking into account the effects of kinematic parameters, the material removal rate(MRR) on silicon panel front surface was obtained. In the last section the design of a schematic carrier with multi-zone, in which the compensation back pressure can be applied, is presented. The model and the design can be used for providing theoretical guide to the development of CMP equipments and selection of the kinematic variables in CMP process.


Author(s):  
X. H. Zhang ◽  
Z. J. Pei ◽  
Graham R. Fisher

Silicon wafers are the fundamental building blocks for most integrated circuits. Chemical mechanical polishing is used to manufacture silicon wafers as the final material removal process to meet the ever-increasing demand for flatter wafers and lower prices. The polishing pad is one of the critical factors in planarizing wafer surfaces and its properties play critical roles in polishing. However, pad properties change during the process. This paper reviews the measurement methods for thickness, hardness, and Young’s modulus of polishing pads.


2021 ◽  
Vol 11 (10) ◽  
pp. 4358
Author(s):  
Hanchul Cho ◽  
Taekyung Lee ◽  
Doyeon Kim ◽  
Hyoungjae Kim

The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. In this study, the profile shape of a CMP pad was predicted through a kinematic simulation based on the trajectory density of the diamond abrasives of the diamond conditioner disc. The kinematic prediction was found to be in good agreement with the experimentally measured pad profile shape. Based on this, the shape error of the pad could be maintained within 10 μm even after performing the pad conditioning process for more than 2 h, through the overhang of the conditioner.


Sign in / Sign up

Export Citation Format

Share Document