polishing pads
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Li Chang ◽  
Ziyan Man ◽  
Lin Ye

This paper reported the new polishing technique by using a shear thickening fluid (STF). In experiments, the steel workpiece was immersed into the STF under the static condition. When the workpiece started rotating at a certain speed, the surrounding STF became solidified due to the shear thickening effect. Consequently, the solidified STF held the abrasive particles and polished the surfaces of the workpiece. The surface roughness of the treated surfaces was clearly dependent on the size of the abrasive particles. Owing to the reversible phase transition between liquid and solid status for the STF, the polishing process can be conducted without the use of polishing pads. Moreover, the new polishing technique using the STF can polish some complex structures having the surfaces with different heights and/or orientations, which cannot be achieved by the traditional one-step polishing method.


2021 ◽  
Author(s):  
Peng Zhang ◽  
Jingfang Yang ◽  
Huadong Qiu

Abstract Silicon carbide (SiC) has been a promising the-third-generation semiconductor power device material for high-power, high-temperature, substrate applications. It aims to improve the material removal rate (MRR), on the premise of ensuring the surface roughness requirements of the double-faced mechanical polishing of 6-inch SiC substrate. To obtain the relationship between any point on SiC substrate and polishing pads, the model about double-faced mechanical polishing has been built and the kinematics equations were created. Best optimized material removal rate parameters were obtained. MRR reached the maximum when speed rate of the outside ring gear to the inside sun gear m=-1, speed rate of lower plate to the inside sun gear n=5, SiC substrate distribution radius RB=75. The primary and secondary order of MRR (n>m>RB) was obtained. An accurate mathematical model of orthogonal rotary regression test of Tri-factor quadratic of MRR was established and the regression model was significant. Surface quality of SiC substrate was observed and characterized with SEM and AFM. It greatly provides a key guarantee for the next process of CMP, confirmed the importance of MRR to ultra-smooth polishing, and provides a guarantee for its application in semiconductor equipment and technology.


2020 ◽  
Vol 30 (2) ◽  
pp. 025002
Author(s):  
Bin Luo ◽  
Qiusheng Yan ◽  
Zhanliang Huang ◽  
Jisheng Pan ◽  
Youzhi Fu

Author(s):  
Urara Satake ◽  
Toshiyuki Enomoto ◽  
Teppei Miyagawa ◽  
Takuya Ohsumi

Abstract The demand for improving the image quality of cameras has increased significantly, especially in industrial applications, such as broadcasting, on-vehicle, security, factory automation, and medicine. Surface of glass lenses, which is a key component of cameras, is formed and finished by polishing using small tools. However, the existing small tool polishing technologies exhibit serious problems including an unstable removal rate with the accumulated polishing time. In concrete, low removal rate at the beginning of the polishing process and sudden decrease in the removal rate during the polishing process significantly deteriorate stability of the removal rate. To improve the stability of the removal rate, we proposed a vibration-assisted polishing method using newly developed polishing pads with titanium dioxide particles in the previous work. Polishing experiments on glass lenses confirmed that the variation in the removal rate was suppressed by the developed polishing method; however, the reason for the improvement, in concrete, the relation between the vibration of polishing pressure and the stability of the removal rate remains unknown. In this study, we investigated and clarified the effect of the vibration of polishing pressure on the surface conditions of polishing pads, which strongly affected removal rate.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950066 ◽  
Author(s):  
Hsien-Kuang Liu ◽  
Chao-Chang A. Chen ◽  
Chun-Jen Chen

In this paper, a functional ternary slurry consisting of polyurethane (PU) microspheres, graphene oxide (GO) nano platelets and silicon oxide (SiO2) abrasives was used to carry out the polishing process on Si face of 4H-SiC wafers. The processing parameters of the slurry include graphene weight fraction in slurry GO1–GO7 (0.1–0.7[Formula: see text]wt.%), pH value (3–5), and sonication time T5–T15 (5–15[Formula: see text]min). Polishing process is conducted with two kinds of polishing pads A and B, PU and PC (polycarbonate). Results show that material removal rate (MRR) increases with increasing GO weight fraction up to GO5; besides, MRR also increases with increasing sonication time up to T10, and with increasing pH value. Using PU pad, the GO5-T10-pH5-A slurry leads to highest MRR 102.220[Formula: see text]nm/h of the polished SiC wafer. On the other hand, surface roughness improvement rate (SRIR) increases with increasing GO weight fraction up to GO5, and increases with increasing sonication time up to T15. But SRIR is not affected by pH value. Regarding effect of pad type, on average the PU pad results in higher MRR and better SRIR compared with the PC pad. Using PC pad, GO5-T10-pH5-B leads to lower MRR of 87.627[Formula: see text]nm/h. The addition of GO as the ternary slurry demonstrates its better effect on polishing SiC wafers by comparing with the counterpart binary slurry without GO. For example, MRR by the counterpart slurry SiO212-pH5-A is 58.411[Formula: see text]nm/h, which is lower than 102.220[Formula: see text]nm/h by the ternary slurry GO5-T10-pH5-A. Both XPS and Raman spectra demonstrate that the wafer polished by the functional ternary slurry can effectively produce the softer SiO2 reactant layer on SiC wafer, and result in better polishing performance.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Ping-Chi Tsai ◽  
Yu-Zheng Lin

The local viscoelastic properties of soft polishing pads with different usage durations are measured by a micro-scale mechanical analysis testing platform. The testing reveals stimulus-adaptive local viscoelasticity of soft pads under the activation of asperity contact. This phenomenon suggests asperity-dependent local modulus. Such an increase of local modulus induced by higher asperity provides a further enhancement effect to the planarization of surface asperity. Furthermore, the measurement outcomes suggest that the reaction of local micro-scale viscoelastic properties of the soft pad surface to the workpiece asperity will decay with usage time. The current study provides a detailed understanding of the aging effects for the soft pad and explains the performance decay during soft pad polishing from a local micro-scale interfacial perspective.


2019 ◽  
Vol 13 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Urara Satake ◽  
Toshiyuki Enomoto ◽  
Teppei Miyagawa ◽  
Takuya Ohsumi ◽  
Hidenori Nakagawa ◽  
...  

The demand for improving the image quality of cameras has increased significantly, especially in industrial fields such as broadcasting, on-vehicle, security, factory automation, and medicine. The surface of glass lenses as a key component of cameras is formed and finished by polishing using small tools. The existing polishing technologies, however, exhibit serious problems including an unstable material removal rate over time. In our previous work, the mechanism of time variation in material removal rate was clarified. Based on the findings, a vibration-assisted polishing method using polishing pads containing titanium dioxide particles was developed for improving the stability of the material removal rate with the accumulated polishing time. Our experiments revealed that the proposed polishing method suppressed the time variation significantly in the material removal rate. The developed polishing pads, however, possessed a short life because of their poor wear resistance; as such, they could not be applied to the mass-production process of lenses. In this study, we applied the vibration-assisted polishing method to the polishing process using commercial polishing pads that exhibit sufficient wear resistance for practical use. To investigate the effect of vibration on the stability of the material removal rate, polishing experiments and the observation of slurry flow on the surface of the polishing pads during the vibration-assisted polishing process were conducted. Based on the findings, a new polishing method utilizing a large-amplitude high-frequency vibration applied to the polishing pressure was developed. In addition, a new polishing method utilizing the overhang of a polishing pad, where the polishing pad was moved to hang over the edge of the workpiece for incorporating periodic dressing processes of the polishing pad surface during the polishing process, was also developed. Our polishing experiments revealed that both the proposed polishing methods improved the stability of the material removal rate significantly over the course of the polishing process.


Sign in / Sign up

Export Citation Format

Share Document