Anti-Twinning in an Ni-Mo-Cr Alloy

2013 ◽  
Vol 203-204 ◽  
pp. 254-257
Author(s):  
Mirosław Wróbel ◽  
Elżbieta Stępniowska ◽  
Stanisław Dymek

Two morphological types of mechanical twins occur in the microstructure of cold rolled Ni-Mo-Cr alloy: long – passing over whole grains and micro-twins – confined to individual long range ordered domains. Long mechanical twins were only formed in the disordered alloy. Such twins are typical for metals with the face centered cubic structure with relatively low stacking fault energy. They do not form in the grains with twinning prohibited crystallographic orientations, e.g. {110}. Both types of twins were found in an alloy subjected to prolong annealing at 650 °C. The annealing induces long range ordering reaction leading to the formation of ordered domains with the body centered orthorombic crystal structure (oI8). The twins were of type I, type II, compound twins or pseudo-twins, depending on the crystallographic orientation of the ordered phase in relation to the matrix. It was found that twins of such types were formed even in grains with the {110} orientation and result from the anti-twinning deformation. However, in this orientation they were confined to ordered domains rather than developed into the long form crossing entire grains. On the other hand, the long twins of various types were formed in grains with other twinning favoring crystallographic orientations.

2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


1976 ◽  
Vol 31 (12) ◽  
pp. 1539-1542 ◽  
Author(s):  
H. M. Ledbetter

Abstract The Poisson ratio υ of a polycrystalline aggregate was calculated for both the face-centered cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential was used. Deviations of υ from 0.25 were verified. A lower value of υ is predicted for the f.c.c. case than for the b.c.c. case. Observed values of υ for twenty-three cubic elements are discussed in terms of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-atomic potential are discussed.


1959 ◽  
Vol 37 (3) ◽  
pp. 350-361 ◽  
Author(s):  
D. D. Betts

The various sets of basis functions useful in discussing cubic crystals must include sets of symmetrized combinations of powers of the co-ordinates ortho-gonalized over the cellular polyhedron. Such polynomials are here called solid harmonics. A study of the actual solid harmonics reveals the limitations of the spherical cell approximation. The solid harmonics can be used to develop a new method over the cellular polyhedron of the body-centered cubic lattice or of the face-centered cubic lattice.


1978 ◽  
Vol 56 (8) ◽  
pp. 1057-1070 ◽  
Author(s):  
N. Matsunami ◽  
M. L. Swanson ◽  
L. M. Howe

Interactions between irradiation-produced defects and solute atoms in metals have been investigated using the channeling technique. The interaction of interest in this investigation is the trapping of self interstitials by small solute atoms thus creating a [Formula: see text] mixed dumbbell, consisting of a host atom and a solute atom straddling a lattice site in the face-centered-cubic lattice. The displacement of solute atoms from lattice sites in the mixed dumbbell configuration was determined by comparing the experimentally observed normalized yields from solute atoms and from host atoms with the yields calculated analytically using the continuum approximation. The solute atoms in Al–Mn, Al–Cu, and Cu–Be mixed dumbbells were situated at 0.5 Å from the body-centered position, whereas the Ag atoms in Al–Ag dumbbells were 0.7 Å from this position. This result is consistent with the theoretical expectation that the smallest solute atoms are displaced the greatest amount in mixed dumbbells. In addition, experimentally obtained solute atom yields for [Formula: see text] and [Formula: see text] angular scans were compared with calculated scans. It was concluded that for large displacements of solute atoms into the flux peaking region, the analytical (continuum) calculation is a reliable method of determining solute atom displacements, either from the aligned yields or from the angular scans.


1985 ◽  
Vol 51 ◽  
Author(s):  
L. D. Stephenson ◽  
J. Bentley ◽  
R. B. Benson ◽  
G. K. Hubler ◽  
P. A. Parrish

ABSTRACTThe characteristics of A112Mo formed in aluminum annealed after implantation with selected maximum molybdenum concentrations were examined by analytical electron microscopy techniques. The A112MO was isolated as the only precipitate in the microstructure for maximum as-implanted molybdenum concentrations up to 11 atomic percent. The morphology of the A112MO can be selected by choosing the maximum as-implanted molybdenum level over the same concentration range. A predominantly lamellar A112MO precipitate structure formed when aluminum was annealed at 550°C after implantation with maximum molybdenum concentrations in the range of 3.3 - 4.4 at.%. The orientation of the body centered cubic (bcc) A112Mo precipitate with respect to the face centered cubic (fcc) matrix can be expressed as (123)p || (002)m and [301]p || [310]m. An explanation for the experimentally observed orientation relationship was developed based on the characteristic relationships between the bcc A112MO precipitate and the fcc matrix. A continuous film of A112MO formed in the surface modified region when aluminum was annealed after implantation with maximum molybdenum concentrations in the approximate range of 8-11 at.%. The microstructure of the A112Mo film was found to depend on the annealing temperature. A granular film formed after annealing at 550°C whereas a mottled film formed after annealing at 400°C. Sequential annealing experiments revealed that the mottled film transforms to a granular film which indicates the mottled film is metastable.


2003 ◽  
Vol 18 (10) ◽  
pp. 2300-2303 ◽  
Author(s):  
H. R. Gong ◽  
L. T. Kong ◽  
B. X. Liu

Ab initio calculation was performed to predict the structures, lattice constants, and cohesive energies of metastable Cu75Cr25 and Cu50Cr50 phases. An n-body Cu–Cr potential was derived through fitting to some ab initio calculated results and was capable of reproducing some intrinsic properties of the Cu–Cr system. Based on the derived potential, molecular dynamics simulations predicted that for a Cu100−xCrx alloy, the face-centered-cubic structure is more stable than the body-centered-cubic (bcc) one when 0 ≤ x ≤ 25, while the bcc structure becomes energetically favored when 25 < x ≤ 100. Interestingly, the predictions match well with the experimental observations.


2016 ◽  
Vol 49 (4) ◽  
pp. 1177-1181 ◽  
Author(s):  
X.-F. Gu ◽  
T. Furuhara

The composition, crystal structure and precipitation crystallography of a newly found precipitate are characterized by Cs-corrected scanning transmission electron microscopy. The composition of the plate-like precipitate could be expressed as MgxAl2−xGd (x= 0.38), and its crystal structure is the same as the face-centered cubic type Laves phases Mg2Gd and Al2Gd, with a lattice parameter of 7.92 Å (space group No. 227, Fd\overline 3m). The orientation relationship between the matrix and precipitate is found to be (0001)m//(111)pand [10\overline 10]m//[1\overline 10]p, and the habit plane is parallel to the (0001)m//(111)pplane. In addition, this preferred crystallography of phase transformation is well explained on the basis of the atomic matching at the interface.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 700 ◽  
Author(s):  
Jakub Narojczyk ◽  
Krzysztof Wojciechowski

The results of studies on the influence of periodically stacked nanolayer inclusions, introduced into the face-centered cubic (f.c.c.) hard sphere crystal, on Poisson’s ratio of the obtained nanocomposite system are presented. The monolayers are orthogonal to the [ 001 ] -direction. They are formed by hard spheres with diameter different from the spheres forming the matrix of the system. The Monte Carlo computer simulations show that in such a case the symmetry of the system changes from the cubic to tetragonal one. When the diameter of the inclusion spheres increases at certain range, a decrease of the negative Poisson’s ratio in the [ 101 ] [ 1 ¯ 01 ] -directions is observed, i.e., the system enhances its partial auxeticity. The dependence of the maximal, average, and negative parts of the minimal Poisson’s ratio on the direction of the applied load are shown in a form of surfaces in spherical coordinates, plotted for selected values of nanolayer particle diameters. The most negative value of the Poisson’s ratio found among all studied systems was − 0.11 (at pressure p * = 100 , which is about ten times higher than the melting pressure) what is almost twice more negative than in the f.c.c. crystal of identical hard spheres. The observed effect weakens along with the decrease of pressure and becomes hardly noticeable near melting. This study indicates that modifying only the size of the inclusion particles one can change Poisson’s ratio of nanocomposites at high pressures.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Sign in / Sign up

Export Citation Format

Share Document