Polycrystalline Silicon Gettering Layers with Controlled Residual Stress

2013 ◽  
Vol 205-206 ◽  
pp. 284-289 ◽  
Author(s):  
David Lysáček ◽  
Petr Kostelník ◽  
Petr Pánek

We report on a novel method of low pressure chemical vapor deposition of polycrystalline silicon layers used for external gettering in silicon substrate for semiconductor applications. The proposed method allowed us to produce layers of polycrystalline silicon with pre-determined residual stress. The method is based on the deposition of a multilayer system formed by two layers. The first layer is intentionally designed to have tensile stress while the second layer has compressive stress. Opposite sign of the residual stresses of the individual layers enables to pre-determine the residual stress of the gettering stack. We used scanning electron microscopy for structural characterization of the layers and intentional contamination for demonstration of the gettering properties. Residual stress of the layers was calculated from the wafer curvature.

1995 ◽  
Vol 403 ◽  
Author(s):  
J. J. Pedroviejo ◽  
B. Garrido ◽  
J. C. Ferrer ◽  
A. Cornet ◽  
E. Scheid ◽  
...  

AbstractConventional and Rapid Thermal Annealing of Semi-Insulating Polycrystalline Silicon layers obtained by Low Pressure Chemical Vapor Deposition (LPCVD) from disilane Si2H6 have been performed in order to determine the structural modifications induced on the layers by these thermal treatments. The study of these modifications has been carried out by several analysis methods like FTIR, XPS, TEM, RAMAN and ellipsometry. The results obtained are presented, contrasted and discussed in this work.


1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.


1997 ◽  
Vol 308-309 ◽  
pp. 594-598 ◽  
Author(s):  
Y.J Mei ◽  
T.C Chang ◽  
J.C Hu ◽  
L.J Chen ◽  
Y.L Yang ◽  
...  

2006 ◽  
Vol 89 (11) ◽  
pp. 112119 ◽  
Author(s):  
M. Alevli ◽  
G. Durkaya ◽  
A. Weerasekara ◽  
A. G. U. Perera ◽  
N. Dietz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document