The Influence of Addition of the Rare Earth Elements on the Structure and Hardness of AlZn12Mg3.5Cu2.5 Alloy

2015 ◽  
Vol 226 ◽  
pp. 39-42
Author(s):  
Rafał Michalik ◽  
Tomasz Mikuszewski

Aluminium alloys are characterized by a number of advantageous properties , which include: low density ,high relative strength , high electrical and thermal conductivity , ease of machining and good dumping features. Particular interesting are high-strength aluminum alloys of zinc, magnesium and copper. These alloys are used mainly in aircraft, building &structure, electrical, electrical power and automotive industry. A significant problem associated with the use of high-strength aluminium-zinc alloys is their insufficient resistance to corrosion. Improvement of corrosion resistance can be obtained by application of alloy micro-additives. The article shows results of examinations related to influence of rare earth additive on the structure and hardness of AlZn12Mg3.5Cu2.5 alloy. The scope of examination included: structure testing using scanning microscope, X – ray microanalysis, hardness test. Examinations have shown higher hardness of samples with rare earth additives. Was found , that rare earth addition influences on more fine –grained structure of the AlZn12Mg3.5Cu2.5 alloy.

2020 ◽  
Vol 2020 (7) ◽  
pp. 3-11
Author(s):  
Viktor Ovchinnikov ◽  
Ruslan Rastopchin

On the analysis basis of trends in the development of aluminum alloy plasma welding it is shown that in most cases for critical structures there is used welding with a non-consumable electrode on reversed polarity with adding wire material. A welding method with a hollow anode to increase non-consumable tungsten electrode durability is described. It is shown that to increase quality of welded joints in aluminum-lithium alloys the application of plasma-forming gas programmable pulse feed has promising outlooks. In this case side by side with the decrease of such defects as pores and oxide films the obtaining of more fine-grained structure in metal seams is marked.


2015 ◽  
Vol 1085 ◽  
pp. 312-315
Author(s):  
Oleg L. Khasanov ◽  
Edgar S. Dvilis ◽  
Zulfa G. Bikbaeva ◽  
Valentina V. Polisadova ◽  
Alexey O. Khasanov ◽  
...  

Ceramics samples in the form of a parallelepiped with high strength characteristics have been made. For the manufacture of the ceramics samples a powder mixture from submicron В4С powder with additives (1 wt%, 5 wt%, 10 wt%) of boron carbide nanopowder was used. The physical properties of the powder mixtures and strength properties of sintered ceramics have been studied. It was shown that the use of submicron fractions of the boron carbide powder together with nanoadditives is a determining factor in the formation of dense fine-grained structure providing improved physical and mechanical properties of the ceramics.


2013 ◽  
Vol 765 ◽  
pp. 383-387 ◽  
Author(s):  
Leandro Bolzoni ◽  
E.M. Ruiz-Navas ◽  
Elena Gordo

Titanium is characterised by an outstanding combination of properties like high strength, low density, good corrosion resistance and biocompatibility. Nonetheless, widespread employment of titanium at the industrial level, especially in the automotive industry, has not been achieved yet because of its high extraction and production costs. Consequently, titanium finds applications mainly in high demanding sectors, such as the aerospace industry or to produce biomedical devices, where the final high cost is not the principal issue. The processing of titanium and its alloys by means of powder metallurgy (PM) techniques is claimed to be a suitable way to reduce the fabrication cost of titanium products as well as offering the possibility to design new alloys which are difficult to obtain using the conventional metallurgical route, for example due to segregation of heavy alloying elements. This work deals with the processing of hydride-dehydride elemental titanium powder by means of different PM methods and aims at investigating the processing of near net-shape, chemically-homogeneous and fine-grained titanium-based components. In particular, properties achievable (i.e. relative density, microstructure and mechanical properties) and problems related to the processing of elemental titanium, by both the conventional PM route of pressing and sintering and the advanced PM method of hot-pressing, are presented.


2017 ◽  
Vol 36 ◽  
pp. 354-361 ◽  
Author(s):  
Weibing Guo ◽  
Xuesong Leng ◽  
Tianmin Luan ◽  
Jiuchun Yan ◽  
Jingshan He

Tribologia ◽  
2017 ◽  
Vol 273 (3) ◽  
pp. 67-75 ◽  
Author(s):  
Łukasz KONAT ◽  
Jerzy NAPIÓRKOWSKI ◽  
Beata BIAŁOBRZESKA

In the paper, microstructures and the examination results of abrasive-wear resistance of steel grades Brinar 400 and Brinar 500 are presented. It was found on the grounds of light and electron scanning microscopy that these steels are characterised by subtle differences in microstructures, influencing their mechanical and usable properties. In as-delivered condition, the steels have fine-grained structure with post-martensitic orientation, containing few particles of carbide phases. Such microstructures of Brinar steels and the performed chemical analyses indicate that their properties are formed during specialised operations of thermo-mechanical rolling. Generally, it can be said that the examined steels were designed according to the accepted standards of material engineering, related to low-alloy, high-strength, and abrasive-wear resistant martensitic steels. According to the above, the obtained results of structural examinations of Brinar 400 and Brinar 500 steels were referred to real abrasive-wear indices obtained by the spinning bowl method with use of various abrasive soil masses. The tests carried-out in light soil (loamy sand), medium soil (sandy loam), and in heavy soil (loam), as well as hardness measurements showed strict dependence of abrasive-wear indices on microstructures and the heattreatment condition of the examined steels. Examination results of abrasive-wear resistance of Brinar steels were compared with those of steel 38GSA in normalised conditions.


2008 ◽  
Vol 368-372 ◽  
pp. 465-468
Author(s):  
Wen Hu Yang ◽  
Yong Ping Pu ◽  
Shou Tian Chen

The ceramic samples of BaTiO3+½xLn2O3+2mol%TiO2 (0.001≤x≤0.01) were prepared, where Ln is Y, Dy, Ho, Er or Y. The influence of rare earth on the resistivity and microstructure of the samples was investigated by the means of XRD, SEM and electric properties testing. The results showed that the resistivity of La-doped sample decreases when x= 0.003 compared with the undoped sample. However, the range of dopant concentration with Dy, Ho, Er or Y for semiconducting samples is wider, especially for Y-doping. Minimum resistivity at room temperature was observed when x=0.003, which is named after the critical concentration. The experimental results indicated that below the critical concentration of Dy, Ho, Er or Y, the substitution took place in the barium sublattice with electronic compensation, and the rare earth ions began to substitute for titanium gradually above the critical concentration. For Ho-doped BaTiO3 ceramic, the resistivity jump (PTCR effect) near the Curie temperature was the highest in the case of x=0.003. Fine-grained structure of the sample doped with 0.6mol% Dy led to the increase of breakdown field strength and dielectric constant of ceramic samples.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4531
Author(s):  
Sergey Panin ◽  
Ilya Vlasov ◽  
Pavel Maksimov ◽  
Dmitry Moiseenko ◽  
Pavlo Maruschak ◽  
...  

The structure and mechanical properties of the 09Mn2Si high-strength low-alloyed steel after the five-stage helical rolling (HR) were studied. It was revealed that the fine-grained structure had been formed in the surface layer ≈ 1 mm deep as a result of severe plastic strains. In the lower layers, the “lamellar” structure had been formed, which consisted of thin elongated ferrite grains oriented in the HR direction. It was shown that the five-stage HR resulted in the increase in the steel fatigue life by more than 3.5 times under cyclic tension. The highest values of the number of cycles before failure were obtained for the samples cut from the bar core. It was demonstrated that the degree of the elastic energy dissipation in the steel samples under loading directly depended on the area of the grain boundaries as well as on the grain shapes. The fine-grained structure possessed the maximum value of the average torsional energy among all the studied samples, which caused the local material structure transformation and the decrease in the elastic energy level. This improved the crack resistance under the cyclic mechanical loading. The effect of the accumulation of the rotational strain modes at the grain boundaries was discovered, which caused the local structure transformation at the boundary zones. In the fine-grained structure, the formation of grain conglomerates was observed, which increased the values of the specific modulus of the moment of force. This could be mutually compensated due to the small sizes of grains. At the same time, the coarse-grained structures were characterized by the presence of the small number of grains with a high level of the moments of forces at their boundaries. They could result in trans-crystalline cracking.


Sign in / Sign up

Export Citation Format

Share Document