Influence of Physical Properties of B4C Powder on the Strength Properties of the Ceramics Manufactured by SPS Sintering

2015 ◽  
Vol 1085 ◽  
pp. 312-315
Author(s):  
Oleg L. Khasanov ◽  
Edgar S. Dvilis ◽  
Zulfa G. Bikbaeva ◽  
Valentina V. Polisadova ◽  
Alexey O. Khasanov ◽  
...  

Ceramics samples in the form of a parallelepiped with high strength characteristics have been made. For the manufacture of the ceramics samples a powder mixture from submicron В4С powder with additives (1 wt%, 5 wt%, 10 wt%) of boron carbide nanopowder was used. The physical properties of the powder mixtures and strength properties of sintered ceramics have been studied. It was shown that the use of submicron fractions of the boron carbide powder together with nanoadditives is a determining factor in the formation of dense fine-grained structure providing improved physical and mechanical properties of the ceramics.

Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Dillimax 550 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 690 MPa (100 ksi). Plate is delivered in three qualities: basic, tough, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-652. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2012 ◽  
Vol 61 (3) ◽  

Abstract Dillimax 500 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 500 MPa (72 ksi). Plate is delivered in three qualities: basic, high toughness, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, heat treating, and joining. Filing Code: SA-645. Producer or source: Dillinger Hütte GTS.


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


2019 ◽  
Vol 91 ◽  
pp. 02041
Author(s):  
Sergey Udodov ◽  
Yuriy Galkin ◽  
Philip Belov

Additive manufacturing (3D printing) is becoming more and more common in the field of modern construction. However, for wider implementation of this technology, it is necessary to solve a number of material-oriented scientific problems related to development of concrete composition with targeted rheological, stress-strain, physical and mechanical properties. It has been established that time periods between successful applications of layers play the crucial role in ensuring monolithic features of the “printed” structures. Application of mathematics planning of the experiment allowed establishing the main principles of formation of basic physical and mechanical properties of fine-grained concrete depending on material composition.


2012 ◽  
Vol 05 ◽  
pp. 102-110 ◽  
Author(s):  
H. Tamizifar ◽  
A.M. Hadian ◽  
M. Tamizifar

The hardness, toughness and sum of cracks measurement of fine-grained WC - Co hard metals were studied. Thirty commercial and experimental hard metal grades with different additives such as boron carbide ( B 4 C ), vanadium carbide ( VC ), chromium carbide ( Cr 3 C 2) and silicon carbide ( SiC ) were prepared in a commercial sinter HIP furnace. Physical, mechanical and microstructure properties were investigated to build up a representative hardness/sum of cracks measurement band. This band was then used to estimate the most effective sintering temperature and the amount of each additives. Afterwards, influence of grain growth inhibitors in optimum condition were compared. The results showed that the grades, doped with B 4 C and VC as growth inhibitor exhibits more hardness than other comparable doped alloys. However, Cr 3 C 2 is favorable in toughness improvement.


2014 ◽  
Vol 1040 ◽  
pp. 819-823 ◽  
Author(s):  
Aleksander S. Ivashutenko ◽  
Nikita Martyushev ◽  
Igor G. Vidayev

Technology for manufacturing products by magnetic pulse compaction from oxide powders of the (ZrO2 – Y2O3) – Al2O3 system is presented in the paper. Diagram of the magnetic-pulse press with its operating principle being based on Ampere's law is given. Physical and mechanical properties of the obtained compacts are determined. The main feature of the designed technology is the reduced sintering temperature (200 °С) and the acquired fine-grained structure of the products. Another significant advantage achieved by applying the technology is the possibility for manufacturing fine-grained structure ceramic products with high mechanical properties.


2015 ◽  
Vol 226 ◽  
pp. 39-42
Author(s):  
Rafał Michalik ◽  
Tomasz Mikuszewski

Aluminium alloys are characterized by a number of advantageous properties , which include: low density ,high relative strength , high electrical and thermal conductivity , ease of machining and good dumping features. Particular interesting are high-strength aluminum alloys of zinc, magnesium and copper. These alloys are used mainly in aircraft, building &structure, electrical, electrical power and automotive industry. A significant problem associated with the use of high-strength aluminium-zinc alloys is their insufficient resistance to corrosion. Improvement of corrosion resistance can be obtained by application of alloy micro-additives. The article shows results of examinations related to influence of rare earth additive on the structure and hardness of AlZn12Mg3.5Cu2.5 alloy. The scope of examination included: structure testing using scanning microscope, X – ray microanalysis, hardness test. Examinations have shown higher hardness of samples with rare earth additives. Was found , that rare earth addition influences on more fine –grained structure of the AlZn12Mg3.5Cu2.5 alloy.


Alloy Digest ◽  
1993 ◽  
Vol 42 (1) ◽  

Abstract BRUSH CASTING ALLOYS 20C AND 20CT are beryllium copper alloys (1.90-2.15% Be) of very high strength with cobalt as the second alloying element (0.35 to 0.70% Co). Use is in the age-hardened temper. Brush casting alloy 20CT is the fine-grained version. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, and machining. Filing Code: CU-581. Producer or source: Brush Wellman Inc.


Sign in / Sign up

Export Citation Format

Share Document