Deep Trench Isolation and through Silicon via Wetting Characterization by High-Frequency Acoustic Reflectometry

2016 ◽  
Vol 255 ◽  
pp. 129-135 ◽  
Author(s):  
C. Virgilio ◽  
Lucile Broussous ◽  
Philippe Garnier ◽  
J. Carlier ◽  
P. Campistron ◽  
...  

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real concern in integrated circuits manufacturing. We present here a high-frequency acoustic method which enables the local determination of the wetting state of a liquid on real DTI and TSV structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are detectable with this method. Filling time of TSV structures has also been measured.

Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


2013 ◽  
Vol 18 (2-3) ◽  
pp. 33-41
Author(s):  
Dominik Sankowski ◽  
Marcin Bakala ◽  
Rafał Wojciechowski

Abstract The good quality of several manufactured components frequently depends on solidliquid interactions existing during processing. Nowadays, the research in material engineering focuses also on modern, automatic measurement methods of joining process properties, i.a. wetting force and surface tension, which allows for quantitative determination of above mentioned parameters. In the paper, the brazes’ dynamic properties in high-temperatures’ measurement methodology and the stand for automatic determination of braze’s properties, constructed and implmented within the research grant nr KBN N N519 441 839 - An integrated platform for automatic measurement of wettability and surface tension of solders at high temperatures, are widely described


Sign in / Sign up

Export Citation Format

Share Document