The Changes in Surface Morphology and Mechanical Properties of Poly(3-Hydroxybutyrate) and its Copolymer Films during In Vitro Degradation

2016 ◽  
Vol 258 ◽  
pp. 354-357 ◽  
Author(s):  
Vsevolod Zhuikov ◽  
Anton Bonartsev ◽  
Dmitry Bagrov ◽  
Alexey Rusakov ◽  
Alexey Useinov ◽  
...  

In the current work, we studied the degradation of PHB films in vitro by pancreatic lipase and in phosphate buffer saline (PBS). We traced the changes in film properties by several analytical methods: the change of weight, surface roughness and morphology (by atomic-force microscopy) and Young’s modulus (by nanoindentation) were measured.PHB is a semicrystalline polymer and thus the films have lamellar structure. During biodegradation, three types of changes were observed on the film surface: appearance of new lamellae, disappearance of lamellae and disintegration of lamellae into shorter fragments. During the six months of polymer films degradation the weight of samples decreased; and an increase in Young's modulus due to the relatively fast degradation of the amorphous areas was observed by nanoindentation.

Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3192-3201 ◽  
Author(s):  
Srinivas Mettu ◽  
Qianyu Ye ◽  
Meifang Zhou ◽  
Raymond Dagastine ◽  
Muthupandian Ashokkumar

Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane.


Nanoscale ◽  
2018 ◽  
Vol 10 (27) ◽  
pp. 13022-13027 ◽  
Author(s):  
Basant Chitara ◽  
Assaf Ya'akobovitz

The present study highlights the elastic properties of suspended GaS, GaSe and GaTe nanosheets using atomic force microscopy. GaS exhibited the highest Young's modulus (∼173 GPa) among these nanosheets. These materials can withstand maximal stresses of up to 8 GPa and a maximal strain of 7% before breaking, making them suitable for stretchable electronic and optomechanical devices.


2012 ◽  
Vol 1420 ◽  
Author(s):  
Elise Spedden ◽  
James D. White ◽  
David Kaplan ◽  
Cristian Staii

ABSTRACTIn this paper we use the Atomic Force Microscope to measure the Young’s modulus for two types of neuronal cell bodies: cortical neurons obtained from rat embryos and neurons derived from P19 mouse embryonic carcinoma stem cells. The neurons are plated on different substrates coated with two types of protein growth factors, poly-D-lysine and laminin. We report on the Young’s modulus of each type of neuron as well as the variation of modulus between cells plated on different protein substrates. We compare these results to various individual cell and bulk tissue measurements reported in literature. We additionally report on an observed change in the Young’s modulus of cortical neurons when subjected to a short-term reduction in ambient temperature.


2007 ◽  
Vol 334-335 ◽  
pp. 761-764
Author(s):  
D.H. Choi ◽  
C.W. Lee ◽  
P.S. Lee ◽  
J.H. Lee ◽  
W. Hwang ◽  
...  

Young’s modulus of nanohoneycomb structures in the vertical direction relative to the pore (generally along the beam length) is measured according to the porosity from bending tests in atomic force microscopy (AFM). The pore diameters of the nanohoneycomb structures are from about 30 to 60 nm. To determine the Young’s modulus of the nanohoneycomb structures, the area moment of inertia of the nanohoneycomb structure is determined according to the arrangement of the pores. The area moment of inertia of the nanohoneycomb structure is found to be affected by the porosity of the nanohoneycomb structures. The Young’s modulus of the nanohoneycomb structures decreases as a function of the porosity in a large range.


2021 ◽  
Vol 12 ◽  
pp. 1372-1379
Author(s):  
Xiaoteng Liang ◽  
Shuai Liu ◽  
Xiuchao Wang ◽  
Dan Xia ◽  
Qiang Li

The mechanical properties of cells are key to the regulation of cell activity, and hence to the health level of organisms. Here, the morphology and mechanical properties of normal pancreatic cells (HDPE6-C7) and pancreatic cancer cells (AsPC-1, MIA PaCa-2, BxPC-3) were studied by atomic force microscopy. In addition, the mechanical properties of MIA PaCa-2 after treatment with different concentrations of doxorubicin hydrochloride (DOX) were also investigated. The results show the Young's modulus of normal cells is greater than that of three kinds of cancer cells. The Young's modulus of more aggressive cancer cell AsPC-1 is smaller than that of less aggressive cancer cell BxPC-3. In addition, the Young's modulus of MIA PaCa-2 rises with the increasing of DOX concentration. This study may provide a new strategy of detecting cancer, and evaluate the possible interaction of drugs on cells.


Sign in / Sign up

Export Citation Format

Share Document