scholarly journals Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

2021 ◽  
Vol 12 ◽  
pp. 1372-1379
Author(s):  
Xiaoteng Liang ◽  
Shuai Liu ◽  
Xiuchao Wang ◽  
Dan Xia ◽  
Qiang Li

The mechanical properties of cells are key to the regulation of cell activity, and hence to the health level of organisms. Here, the morphology and mechanical properties of normal pancreatic cells (HDPE6-C7) and pancreatic cancer cells (AsPC-1, MIA PaCa-2, BxPC-3) were studied by atomic force microscopy. In addition, the mechanical properties of MIA PaCa-2 after treatment with different concentrations of doxorubicin hydrochloride (DOX) were also investigated. The results show the Young's modulus of normal cells is greater than that of three kinds of cancer cells. The Young's modulus of more aggressive cancer cell AsPC-1 is smaller than that of less aggressive cancer cell BxPC-3. In addition, the Young's modulus of MIA PaCa-2 rises with the increasing of DOX concentration. This study may provide a new strategy of detecting cancer, and evaluate the possible interaction of drugs on cells.

Author(s):  
I. S. Ovchinnikov

This review introduces the study of state-of-art methods for assessing the mechanical properties of insulating materials with low dielectric constant. The main features of measuring Young’s modulus of thin films insulating materials with low dielectric constant are determined by usage of Brillouin light scattering, surface acoustic wave spectroscopy, picosecond laser-acoustic method, ellipsometric porosimetry, nanoindentation and atomic force microscopy in various modes. The author estimated the optimum lateral and optimum depth resolution for each above method. The review analyzes the degree of sample preparation complexity for the measurements by these methods and describes what methods of measurement are destructive for the samples. Besides, the review makes a comparison for the results of evaluating Young’s modulus of insulating materials with low dielectric constant achieved by different methods. Comparative analysis of the methods for assessing mechanical properties lead us to the conclusion that the method of atomic force microscopy is superior to other methods described above, both in lateral (8 nm) and optimum depth (10 nm) resolution. It is shown that due to the small impact force of the atomic force microscope probe on the surface, the method does not have a destructive effect on the sample. In addition, there is no need to create special conditions for the experiment (e.g., the cleanliness level of the premises, the possibility of an experiment under environmental conditions, etc.). This makes the experiment relatively simple in terms of preparing the object of research. It has been also established that the method of atomic force microscopy in the mode of quantitative nanomechanical mapping allows forming a map of the distribution of the Young’s modulus of the insulating material as part of the metallization system of integrated circuits.


Author(s):  
Tien-Dung Do ◽  
Jimuro Katsuyoshi ◽  
Haonai Cai ◽  
Toshiro Ohashi

Mechanotransduction is a well-known mechanism by which cells sense their surrounding mechanical environment, convert mechanical stimuli into biochemical signals, and eventually change their morphology and functions. Primary cilia are believed to be mechanosensors existing on the surface of the cell membrane and support cells to sense surrounding mechanical signals. Knowing the mechanical properties of primary cilia is essential to understand their responses, such as sensitivity to mechanical stimuli. Previous studies have so far conducted flow experiments or optical trap techniques to measure the flexural rigidity EI (E: Young’s modulus, I: second moment of inertia) of primary cilia; however, the flexural rigidity is not a material property of materials and depends on mathematical models used in the determination, leading to a discrepancy between studies. For better characterization of primary cilia mechanics, Young’s modulus should be directly and precisely measured. In this study, the tensile Young’s modulus of isolated primary cilia is, for the first time, measured by using an in-house micro-tensile tester. The different strain rates of 0.01–0.3 s−1 were applied to isolated primary cilia, which showed a strain rate–dependent Young’s modulus in the range of 69.5–240.0 kPa on average. Atomic force microscopy was also performed to measure the local Young’s modulus of primary cilia, showing the Young’s modulus within the order of tens to hundreds of kPa. This study could directly provide the global and local Young’s moduli, which will benefit better understanding of primary cilia mechanics.


Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3192-3201 ◽  
Author(s):  
Srinivas Mettu ◽  
Qianyu Ye ◽  
Meifang Zhou ◽  
Raymond Dagastine ◽  
Muthupandian Ashokkumar

Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane.


Nanoscale ◽  
2018 ◽  
Vol 10 (27) ◽  
pp. 13022-13027 ◽  
Author(s):  
Basant Chitara ◽  
Assaf Ya'akobovitz

The present study highlights the elastic properties of suspended GaS, GaSe and GaTe nanosheets using atomic force microscopy. GaS exhibited the highest Young's modulus (∼173 GPa) among these nanosheets. These materials can withstand maximal stresses of up to 8 GPa and a maximal strain of 7% before breaking, making them suitable for stretchable electronic and optomechanical devices.


Sign in / Sign up

Export Citation Format

Share Document