Characterisation of Reduction of Iron Ore with Carbonaceous Materials

2018 ◽  
Vol 280 ◽  
pp. 433-439 ◽  
Author(s):  
N.H. Najmi ◽  
Nur Farhana Diyana Mohd Yunos ◽  
Norinsan Kamil Othman ◽  
Muhammad Asri Idris

An investigation on the reduction of iron ore with carbonaceous material as a reductant was carried out at 1550°C. Iron ore was mixed with biochar from palm shell and coke as a reference at C/O molar ratio of 1.0. Characterisation of raw materials was performed using X-ray Fluorescence (XRF), Brunauer–Emmett–Teller (BET), Fourier Transmittance Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM-EDX). The samples after reduction were characterised to study the phase transformation and structural properties. The XRD results revealed the iron ore contained hematite as its main composition. After reduction at high temperature, the hematite has been successfully reduced to metallic iron using biochar as a reductant. It was found that the reaction proceeded in a stepwise reduction of iron oxide. The SEM micrographs proved the formation of metallic iron in the sample after reduction at 1550°C. Through characterisation, the biochar from palm shell has physical properties suitable to be an alternative carbon reductant to replace coke.

2007 ◽  
Vol 336-338 ◽  
pp. 1124-1126
Author(s):  
Xiao Su Cheng ◽  
Ling Ke Zeng ◽  
Xiu Yan Li ◽  
Wen Yan Sheng ◽  
An Ze Shui ◽  
...  

In this paper, microspheres were prepared by using Chinese bauxite as raw materials through centrifugal spray drying method. The microstructure and composition of ceramic microsphere were investigated by X-ray diffraction, scanning electron microscope and X-ray energy spectrum. The particle size was 10~100#m. The XRD analysis reveals that the main crystalline phase of the ceramic microsphere were α-Al2O3 and mullite (3Al2O3•2SiO2). The Al2O3 content (chemical composition) of the microspheres was little more than 70%, and the molar ratio of Al2O3/SiO2 was near to the molar ratio of alumina and silica of mullite.


2020 ◽  
Vol 13 ◽  
Author(s):  
H. J. Chen ◽  
Zi Wang ◽  
Lizhai Pei ◽  
Z. Y. Xue ◽  
C. H. Yu ◽  
...  

Aims: The aim is to prepare baking-free bricks using iron ore tailings as the main raw materials. Objective: Iron ore tailings have increased dramatically in recent decades. The storage of the iron ore tailings has potential environmental and safety hazard. Therefore, it is urgent to use the tailings to produce valuable products. Objective: The objective of the research is to treat the tailings by preparing the baking-free bricks. Method: The phases and micro-morphology of the baking-free bricks have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optimal components and preparation parameters of the baking-free bricks were determined by controlling the ratio of the raw materials and forming pressure. The physical properties of the baking-free bricks including compressive strength and density have been analyzed by controlling the forming pressure and curing time. Result: The optimal components of the baking-free bricks is 65wt.% tailings, 5wt.% titanium gypsum, 17wt.% slag, 5wt. Conclusion: Baking-free bricks have been successfully prepared from the iron ore tailings adding a small amount of cementing materials including titanium gypsum, slag, acetylene sludge and waste brick powder. Other: The XRD pattern and SEM observation show that 28 d tailing bricks are mainly composed of irregular particles and a large number of ettringite (Aft) nanorods. The analyzed results revealed that the formed irregular particles and Aft nanorods contribute to the improvement of compressive strength and compactness of the tailing bricks.


2012 ◽  
Vol 534 ◽  
pp. 110-113 ◽  
Author(s):  
Fei Shi ◽  
Peng Cheng Du ◽  
Jing Xiao Liu ◽  
Ji Wei Wu ◽  
Chun Yuan Luo

Using basic magnesium carbonate (Mg(OH)2•4MgCO3•6H2O) and SiO2 as raw materials, forsterite (Mg2SiO4) was prepared by solid state synthesis process. The optimal process for synthesizing Mg2SiO4 was obtained by adjusting Mg/Si molar ratio and sintering temperature. The crystal phase of the obtained Mg2SiO4 powder was determined by X-ray diffraction (XRD). The results indicate that the single-phase Mg2SiO4 powder can be obtained when the mixtures with Mg/Si molar ratio of 2.05~2.01 were sintered at 1350°C for 3h in the air. The as-prepared Mg2SiO4 ceramic samples which were sintered at 1300~1360°C showed better dielectric properties with εr=7.4 and tanδ =7.5×10-4.


2016 ◽  
Vol 697 ◽  
pp. 530-534 ◽  
Author(s):  
Q.L. Guo ◽  
Jun Jun Pei ◽  
Ji Zhong Gan ◽  
Jun Guo Li ◽  
Lian Meng Zhang

The Zr2Al4C5 ceramic was successfully fabricated by the spark plasma sintering at 1800 °C for 10 min under uniaxial 20 MPa pressure in vacuum using a mixed raw materials of Zr, Al, Si and graphite powders. The X-ray diffraction analysis results showed that the unexpected Zr2Al3C5 phase rather than target compound Zr2Al4C5 formed in the sintered samples. An initial Zr:Al:C molar ratio of 2:4.2:4.8 for raw powders, and even 55 mol.% excess Al, did not lead to a phase transformation from Zr2Al3C5 to Zr2Al4C5. When 4 wt.% Si was induced in the starting powders, the major phase became Zr2Al4C5 and no obvious Zr2Al3C5 was detected in the sintered samples with an initial Zr:Al:C molar ratio of 2:6.2:4.8 (55 mol.% excess Al). The introduction of Si could suppress and even remove additional ZrC, and Si atoms would exclusively occupy the site of Al to make Zr2Al4C5 become a stable solid solution. The scanning electron microscopy observation showed that the as-synthesized Zr2Al4C5 grains had elongated, rod-like and/or plate-like shapes. The mechanical properties of the sintered Zr2Al4C5 ceramic were also investigated, and it showed a hardness of 11.06±0.34 GPa and a fracture toughness of 4.6 ± 0.4 MPa×m1/2.


2017 ◽  
Vol 371 ◽  
pp. 117-120 ◽  
Author(s):  
Andrey N. Dmitriev ◽  
G.Yu. Vitkina ◽  
R.V. Petukhov ◽  
L.A. Ovchinnikova

The chemical composition of pellets of various basicity from pig iron ore materials is described. The metallurgical characteristics (reducibility, strength, softening and melting temperatures) is analyzed. The micro X-ray diffraction phase analysis is made. Also the sinter of various basicity from titaniferous raw materials is investigated.


2014 ◽  
Vol 936 ◽  
pp. 701-706
Author(s):  
Daiara F. Silva ◽  
Nelson Heriberto Almeida Camargo ◽  
Nelson Levandowski ◽  
Priscila F. Franczak ◽  
Mônica S. Schneider

Bioceramics of calcium phosphate, obtained from natural raw materials, are promising as bone substitutes because they exhibit crystallographic similarity with the bone tissue. This work deals with the sintering and characterization of calcium phosphate biomaterials from fossilized calcareous shells. Four compositions of biomaterials were prepared with Ca/P molar ratio ranging from 1.4 to 1.67. They were synthesized using a wet method and calcined at 900°C/2h providing calcium phosphate powder, then compressed into a metallic mould. The samples obtained from this compression were sintered at 1200oC for 2h. The biomaterials recovered from sintering were subjected to a microstructural characterization by scanning electron microscopy [SE and by X-ray diffraction [XR. Mechanical properties were determined by compression tests. Finally, the Arthur method was used for determining the hydrostatic density and open porosity from these biomaterials. The value of fracture strength was between 54 and 84 MPa for compositions 1.5, 1.67 and 1.6 molar and for composition 1.4 molar about 328 Mpa. The results also showed was the amount of open porosity which ranged between 35 and 54% with increasing Ca/P molar ratio. These studies demonstrate that the production of biomaterials from fossilized calcareous shells may be a new alternative to the production of biomaterials for bone reconstruction.


2014 ◽  
Vol 32 (4) ◽  
pp. 696-701 ◽  
Author(s):  
Hong-Yan Sun ◽  
Xin Kong ◽  
Wei Sen ◽  
Zhong-Zhou Yi ◽  
Bao-Sen Wang ◽  
...  

AbstractEffect of different Sn contents on combustion synthesis of Ti2SnC was studied using elemental Ti, Sn, C and TiC powders as raw materials in the Ti-Sn-C and Ti-Sn-C-TiC system, in which the molar ratio of Ti/C was set as 2:1. The reaction mechanism for the formation of Ti2SnC was also investigated. The results showed that the amount of Ti2SnC in combustion products firstly increased with increasing of Sn content (0.6 to 0.8 mol), and then decreased with further increasing of Sn content (1.0 to 1.2 mol). Upon addition of 15 % TiC instead of Ti and C, the optimum addition of Sn decreased to 0.7 mol and a higher purity of Ti2SnC was obtained. The Ti2SnC powders were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


2016 ◽  
Vol 16 (4) ◽  
pp. 4233-4238
Author(s):  
Qinglong Wang ◽  
Kexun Chen ◽  
Yali Zhang

The photocatalytic materials were prepared by sol–gel method: the main raw materials were tetrabutyltitanate and the lanthanum nitrate hexahydrate, bentonite was the carrier to support TiO2.The properties of the composites were characterized by specific surface area (BET), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). The photocatalytic degradation of cyanide waste water was used to assess the photocatalytic activity of the materials. The experimental results showed that the suitable content of lanthanum and roasted temperature could improve the photocatalytic activity. When the composites were roasted at 400 °C and the molar ratio of La to Ti was 1%, the photocatalyst reached optimal performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Zhulin Liu ◽  
Xuegong Bi ◽  
Zeping Gao ◽  
Yayu Wang

In this paper, carbon-containing pellets were prepared by using crop-derived charcoal made from agricultural residuals and iron ore concentrates, and their pelletizing performance and properties were studied. Experimental results showed that the strengths of pellets were related to the particle size of concentrates and the content of moisture, bentonite, and crop-derived charcoal fines in the pelletizing mixture and the temperature of roasting and reduction. That the granularity of raw materials was fine and the bentonite content increased was beneficial to the improvement of pellet strengths. The suitable molar ratio of carbon to oxygen was 1.0 and the proper proportioning ratios of moisture and binder were 8.0% and 6.5%, respectively. The pellet strengths increased accordingly with increasing the reduction temperature, and when the temperature reached 1200°C, accompanied by the fast reduction of iron and the formation of crystal stock, the dropping strength of product pellets was 15 times and the compressive strength was 1650 N; this may be improved by grinding of the concentrate, leading to acceptable strength for the blast furnace.


2019 ◽  
Vol 822 ◽  
pp. 343-349 ◽  
Author(s):  
Elena Gotlib ◽  
Ha Phuong Thi Nya ◽  
Thi Lan Anh Nguyen ◽  
Alla G. Sokolova ◽  
Ekaterina Yamaleeva ◽  
...  

The authors have shown the effective use of synthesized epoxidized rubber s ee d oil as a modifier of epoxy com pound materials. It was stated that at the content of epoxidized rubber s ee d oil of 10 weight parts for 100 weight parts of epoxy resin ED-20, hardness and wear have been increased by 34 and 21% correspondingly, while the frictional coefficient was being reduced by a factor of 1.5 . Wollastonite has been synthesized on the base of rice husk and limestone. By means of the X-ray diffraction method, it was proven that the specimen of synthesized calcium silicate with the molar ratio СаСО 3 :SiO 2 = 1. 2:1 is characterized by the structure closest to the naturally occurring wollastonite.


Sign in / Sign up

Export Citation Format

Share Document