Evaluation of Wear Properties of Stir Cast AA7050 -10% B4C Ex Situ Composite through Fuzzy-TOPSIS MCDM Method

2019 ◽  
Vol 291 ◽  
pp. 1-12
Author(s):  
Arvind Kumar ◽  
Ram Naresh Rai

The present paper discussed the dry sliding wear and friction behavior of flux assisted stir cast AA7050-10% B4C composite. The K2TiF6 flux improves the wettability of B4C in molten aluminium. The casted composite were heat treated as per T-6 standard. The microstructure studies confirm the uniform distribution of B4C with the layers of Ti compound around it. Both As Casted Composite hereafter called as ACC and Heat Treated Composite hereafter called as HTC under gone dry sliding wear test at room temperature. The experiments were designed using Taguchi L18 mixed design. The responses of the experiment were optimized using fuzzy-TOPSIS MCDM method. From the experimental investigation it was concluded that wear rate of the composite material is a function of normal loads and sliding speed. Moreover, wear rate, coefficient of friction and amount of heat generation for HTC is comparatively less than ACC. This may due to the homogeneous distribution of particles and also formation proper interfacial bond between matrix and reinforcements after heat treatment.

2014 ◽  
Vol 490-491 ◽  
pp. 83-87
Author(s):  
Qing Lin Li ◽  
Tian Dong Xia ◽  
Ye Feng Lan ◽  
Yi Sheng Jian

The effects of the primary Si phase and applied load on the dry sliding wear behaviors of hypereutectic Al-20Si alloy were investigated. The results show that coarse polygonal and star-like primary Si was refined into fine blocky shape by increasing superheat treatment temperature. The friction coefficient and wear rate significantly decrease after decreasing the size and changing the morphology of primary Si. Moreover, the friction coefficient and wear rate increase with the increase of applied load. Therefore, the wear properties are greatly influenced by the parameters like morphology and size of primary Si as well as applied load.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2004 ◽  
Vol 25 (2) ◽  
pp. 163-166 ◽  
Author(s):  
Feng Wang ◽  
Huimin Liu ◽  
Yajun Ma ◽  
Yuansheng Jin

2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, the dry sliding wear behaviour of recursively friction stir processed AA7075 was investigated using a pin-on-disc wear testing apparatus. The microstructure of the processed specimen was probed using optical microscopy, transmission electron microscopy and atomic force microscopy. Experiments were conducted using Taguchi experimental design by varying three different parameters like load, sliding velocity and sliding distance, and the analysis of variance was performed to identify the influence of the parameters over the wear rate. From the main effect plot, the combination of 9.81 N of load, 2 m/s of sliding velocity and a sliding distance of 2000 m was identified as the optimum levels that minimize the wear rate. The regression model was developed to calculate the wear rate, and the validation test was performed with the optimum parameter combination and compared with the experimental results. Wear tracks were examined using field-emission scanning electron microscopy to identify the type of wear mechanism.


2018 ◽  
Vol 877 ◽  
pp. 118-136 ◽  
Author(s):  
Ashiwani Kumar ◽  
Amar Patnaik ◽  
I.K. Bhat

In the current research work, the influence of titanium metal powder on wear beheviour of Al 7075 composites is investigated. These composites were fabricated by using the high vacuum casting machine. The Tribological beheviour of titanium metal powder aluminum alloy composites was investigated by performing dry sliding experiments as a function of wear with a E-31 harden steel disk( 62 HRC) as the counterpart on pin on disk machine . Wear experiments were performed for normal load of 20, 35, 50 , 65 and 80 N at sliding velocities of 0.25, 0.5, 0.75, 1, 1.25 m/s and sliding distance (250 ,500, 750, 1000 and 1250 m at room temperature. The tests were performed on Taguchi’s L25 orthogonal array and the effect of working parameters on wear rate was studied using ANOVA. To investigate the dominant sliding wear mechanism for different steady state experiment conditions, the SEM micrograph of worn surfaces were analyzed using scanning electron microscopy. The wear rate was found to minimum as compared to unfilled alloy and the wear resistance improves the aluminum alloy composites. Finally, it was investigated that the analysis of microstructure and wear properties of titanium metal powder filled alloy composite.


Sign in / Sign up

Export Citation Format

Share Document